Insights into Siglec-7 Binding to Gangliosides: NMR Protein Assignment and the Impact of Ligand Flexibility
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
2022ZEZS45
PRIN MUR 2022
P2022M457Z
PRIN MUR PNRR 2022
European Research Council (ERC) under the European Union's Horizon 2020 ERC-STG No 851356
NextGenerationEU, ITACA.SB, Project n° IR0000009), MUR 3264/2021 PNRR M4/C2/L3.1.1
ProgettoDipartimentidiEccellenza2023-2027toUNINAandUNIFI
Ministry of Education, Universities and Research (Italy)
PNRR, Missione 4 - Componente 2 - NextGenerationEU - Partenariato Esteso INF-ACT - One Health Basic and Translational Research Actions Addressing Unmet Needs on Emerging Infectious Diseases MUR: PE00000007
H2020-MSCA-ITN-2020(contractn°956758)
H2020-MSCA-ITN
Accademia Nazionale dei Lincei
25-18490S
ECzech Science Foundation
LTC20078
Ministry of Youth, Education and Sports of the Czech Republic
LUAUS25250
Ministry of Youth, Education and Sports of the Czech Republic
CA18103INNOGLY(STSM)
COST ACTION
PubMed
40285643
PubMed Central
PMC12140324
DOI
10.1002/advs.202415782
Knihovny.cz E-resources
- Keywords
- NMR, gangliosides, siglec‐7, structural biology,
- MeSH
- Antigens, Differentiation, Myelomonocytic * metabolism chemistry MeSH
- Gangliosides * metabolism chemistry MeSH
- Lectins * metabolism chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antigens, Differentiation, Myelomonocytic * MeSH
- Gangliosides * MeSH
- Lectins * MeSH
- Ligands MeSH
- SIGLEC7 protein, human MeSH Browser
Gangliosides, sialylated glycosphingolipids abundant in the nervous system, play crucial roles in neurotransmission, interaction with regulatory proteins, cell-cell recognition, and signaling. Altered gangliosides expression has been correlated with pathological processes, including cancer, inflammatory disorders, and autoimmune diseases. Gangliosides are important endogenous ligands of Siglecs (Sialic acid-binding immunoglobulin-type lectins), I-type lectins mostly expressed by immune cells, that specifically recognize sialylated glycans. Siglec-7, an inhibitory immune receptor on human natural killer cells, represents a potential target for tumor immunotherapy. Notably, the expression of Siglec-7 ligands is high in various cancers, such as pancreatic cancer and melanoma and lead to tumor immune evasion. Siglec-7 binds the disialylated ganglioside GD3, a tumor-associated antigen overexpressed on cancer cells to suppress immune responses. Using a combination of structural biology techniques, including Nuclear Magnetic Resonance (NMR), biophysical, and computational methods, the binding of Siglec-7 to GD3 and Gb3 derivatives is investigated, revealing the importance of ligand conformation in modulating binding energetics and affinity. The greater flexibility of Gb3 derivatives appears to negatively impact binding entropy, leading to lower affinity compared to GD3. A thorough understanding of these interactions could contribute to elucidating molecular mechanisms of cancer immune evasion and facilitate the development of ganglioside-based diagnostic and therapeutic strategies for cancer.
CEINGE Biotecnologie Avanzate Franco Salvatore Via Gaetano Salvatore 486 Napoli 80145 Italy
Department of Chemical Sciences University of Naples Federico 2 Via Cinthia 4 Naples 80126 Italy
Department of Chemistry National Tsing Hua University Hsinchu 300044 Taiwan
Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
See more in PubMed
Schauer R., Kamerling J. P., Adv. Carbohydr. Chem. Biochem. 2018, 75, 1. PubMed PMC
Di Carluccio C., Forgione R. E., Molinaro A., Crocker P. R., Marchetti R., Silipo A., Carbohydr. Chem. 2021, 44, 31.
Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Darvill A. G., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Essentials of Glycobiology, 4th ed., Cold Spring Harbor Laboratory Press, New York: 2017. PubMed
Groux‐Degroote S., Guérardel Y., Julien S., Delannoy P., Biochemistry (Moscow) 2015, 80, 808. PubMed
Schnaar R. L., Glycoconjugate J. 2023, 40, 159. PubMed PMC
Schnaar R. L., J. Mol. Biol. 2016, 428, 3325. PubMed PMC
Schnaar R. L., Gerardy‐Schahn R., Hildebrandt H., Physiol. Rev. 2014, 94, 461. PubMed PMC
Ohmi Y., Tajima O., Ohkawa Y., Yamauchi Y., Sugiura Y., Furukawa K., Furukawa K., J. Neurochem. 2011, 116, 926. PubMed
Furukawa K., Kambe M., Miyata M., Ohkawa Y., Tajima O., Furukawa K., Cancer Sci. 2014, 105, 52. PubMed PMC
Rodrigues E., Macauley M. S., Cancers 2018, 10, 207. PubMed PMC
Bordoloi D., Kulkarni A. J., Adeniji O. S., Betina Pampena M., Bhojnagarwala P. S., Zhao S., Ionescu C., Perales‐Puchalt A., Parzych E. M., Zhu X., Ali A. R., Cassel J., Zhang R., Betts M. R., Abdel‐Mohsen M., Weiner D. B., Sci. Adv. 2023, 9, adh4379. PubMed PMC
van de Wall S., Santegoets K. C. M., van Houtum E. J. H., Büll C., Adema G. J., Trends Immunol. 2020, 41, 274. PubMed
Krengel U., Bousquet P. A., Front. Immunol. 2014, 5, 325. PubMed PMC
Ito A., Handa K., Withers D. A., Satoh M., itiroh Hakomori S., FEBS Lett. 2001, 504, 82. PubMed
Yamaji T., Teranishi T., Alphey M. S., Crocker P. R., Hashimoto Y., J. Biol. Chem. 2002, 277, 6324. PubMed
Ramos R. I., Bustos M. A., Wu J., Jones P., Chang S. C., Kiyohara E., Tran K., Zhang X., Stern S. L., Izraely S., Sagi‐Assif O., Witz I. P., Davies M. A., Mills G. B., Kelly D. F., Irie R. F., Hoon D. S. B., Mol. Oncol. 2020, 14, 1760. PubMed PMC
Malisan F., Testi R., BBA ‐ Mol. Cell Biol. Lipids 2002, 1585, 179. PubMed
Webb T. J., Li X., Giuntoli R. L., Lopez P. H. H., Heuser C., Schnaar R. L., Tsuji M., Kurts C., Oelke M., Schneck J. P., Cancer Res. 2012, 72, 3744. PubMed PMC
Bärenwaldt A., Läubli H., Expert Opin. Ther. Targets 2019, 23, 839. PubMed
Daly J., Carlsten M., O'Dwyer M., Front. Immunol. 2019, 10, 1047. PubMed PMC
Liu J., Zheng X., Pang X., Li L., Wang J., Yang C., Du G., Acta Pharm. Sin. B 2018, 8, 713. PubMed PMC
Li P., Huang S., Chiang P., Fan C., Guo L., Wu D., Angata T., Lin C., Angew. Chem., Int. Ed. 2019, 131, 11395. PubMed
Kim C. H., Ganglioside Biochemistry, Springer, New York, NY: 2020, pp. 1–13.
Nepravishta R., Ramírez‐Cárdenas J., Rocha G., Walpole S., Hicks T., Monaco S., Muñoz‐García J. C., Angulo J., J. Med. Chem. 2024, 67, 10025. PubMed PMC
Abreu C., Di Carluccio C., Ječmen T., Skořepa O., Bláha J., Marchetti R., Silipo A., Vaněk O., Int. J. Biol. Macromol. 2025, 309, 142672. PubMed
Forgione R. E., Di Carluccio C., Guzmán‐Caldentey J., Gaglione R., Battista F., Chiodo F., Manabe Y., Arciello A., Del Vecchio P., Fukase K., Molinaro A., Martín‐Santamaría S., Crocker P. R., Marchetti R., Silipo A., iScience 2020, 23, 101401. PubMed PMC
Oliva R., Jahmidi‐Azizi N., Mukherjee S., Winter R., J. Phys. Chem. B 2021, 125, 539. PubMed
Nieto‐Fabregat F., Lenza M. P., Marseglia A., Di Carluccio C., Molinaro A., Silipo A., Marchetti R., Beilstein J. Org. Chem. 2024, 20, 2084. PubMed PMC
Soares C. O., Grosso A. S., Ereño‐Orbea J., Coelho H., Marcelo F., Front. Mol. Biosci. 2021, 8, 727847. PubMed PMC
Di Carluccio C., Forgione R. E., Bosso A., Yokoyama S., Manabe Y., Pizzo E., Molinaro A., Fukase K., Fragai M., Bensing B. A., Marchetti R., Silipo A., RSC Chem. Biol. 2021, 2, 1618. PubMed PMC
Di Carluccio C., Crisman E., Manabe Y., Forgione R. E., Lacetera A., Amato J., Pagano B., Randazzo A., Zampella A., Lanzetta R., Fukase K., Molinaro A., Crocker P. R., Martín‐Santamaría S., Marchetti R., Silipo A., ChemBioChem 2020, 21, 129. PubMed
Forgione R. E., Di Carluccio C., Kubota M., Manabe Y., Fukase K., Molinaro A., Hashiguchi T., Marchetti R., Silipo A., Sci. Rep. 2020, 10, 1589. PubMed PMC
Li P., Huang S., Chiang P., Fan C., Guo L., Wu D., Angata T., Lin C., Angew. Chem., Int. Ed. 2019, 58, 11273. PubMed
Liu Y., Yan M., Wang M., Luo S., Wang S., Luo Y., Xu Z., Ma W., Wen L., Li T., ACS Cent. Sci. 2024, 10, 417. PubMed PMC
Groux‐Degroote S., Delannoy P., Int. J. Mol. Sci. 2021, 22, 6145. PubMed PMC
Li Q., Sun M., Yu M., Fu Q., Jiang H., Yu G., Li G., Glycoconjugate J. 2019, 36, 419. PubMed
Iltis C., Seguin L., Cervera L., Duret L., Hamidouche T., Kunz S., Croce O., Delannoy C., Gueŕardel Y., Allain F., Moudombi L., Hofman P., Cosson E., Guglielmi J., Pourcher T., Braud V. M., Shkreli M., Michallet M. C., Feral C. C., Gilson E., Cherfils‐Vicini J., bioRxiv 2021, 440408.
Hashimoto N., Ito S., Tsuchida A., Bhuiyan R. H., Okajima T., Yamamoto A., Furukawa K., Ohmi Y., Furukawa K., J. Biol. Chem. 2019, 294, 10833. PubMed PMC
Attrill H., Imamura A., Sharma R. S., Kiso M., Crocker P. R., Van Aalten D. M. F., J. Biol. Chem. 2006, 281, 32774. PubMed
Yamakawa N., Yasuda Y., Yoshimura A., Goshima A., Crocker P. R., Vergoten G., Nishiura Y., Takahashi T., Hanashima S., Matsumoto K., Sci. Rep. 2020, 10, 8647. PubMed PMC
Yoshimura A., Hatanaka R., Tanaka H., Kitajima K., Sato C., Biochem. Biophys. Res. Commun 2021, 534, 1069. PubMed
Cavdarli S., Delannoy P., Groux‐Degroote S., Cells 2020, 9, 741. PubMed PMC
Tong W., Maira M., Roychoudhury R., Galan A., Brahimi F., Gilbert M., Cunningham A. M., Josephy S., Pirvulescu I., Moffett S., Saragivi H. U., Cell Chem. Biol. 2019, 26, 1013. PubMed
Di Carluccio C., Milanesi F., Civera M., Abreu C., Sattin S., Francesconi O., Molinaro A., Vaněk O., Marchetti R., Silipo A., Eur. J. Org. Chem. 2023, 26, 202300644.
Pröpster J. M., Yang F., Ernst B., Allain F. H. T., Schubert M., Protein Expression Purif. 2015, 109, 14. PubMed
Keller R., The Computer Aided Resonance Assignment, CANTINA Verlag, Germany: 2004.
Williamson M. P., Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1. PubMed
Giuntini S., Balducci E., Cerofolini L., Ravera E., Fragai M., Berti F., Luchinat C., Angew. Chem. 2017, 129, 15193. PubMed PMC
Mayer M., Meyer B., J. Am. Chem. Soc. 2001, 123, 6108. PubMed
Meyer B., Peters T., Angew. Chem. – Int. Ed. 2003, 42, 864. PubMed
Ribeiro M. M. B., Franquelim H. G., Castanho M. A. R. B., Veiga A. S., J. Pept. Sci. 2008, 14, 401. PubMed
Jahmidi‐azizi N., Gault S., Cockell C. S., Oliva R., Winter R., Int. J. Mol. Sci. 2021, 22, 10861. PubMed PMC
GLYCAM‐Web. Utilities for molecular modeling of carbohydrates Woods Group; (2005‐2024) (accessed: April 2025), http://glycam.org.
Case D. A., Ben‐Shalom I. Y., Brozell S. R., Cerutti D. S., Cheatham T. E. III, Cruzeiro V. W. D., Darden T. A., Duke R. E., Ghoreishi D., Gilson M. K., Gohlke H., Goetz A. W., Greene D., Harris R., Homeyer N., Huang Y., Izadi S., Kovalenko A., Kurtzman T., Lee T. S., LeGrand S., Li P., Lin C., Liu J., Luchko T., Luo R., Mermelstein D. J., Merz K. M., Miao Y., Monard G., et al., AMBER, University of California, San Francisco: 2018.
Roe D. R., Cheatham T. E., J. Chem. Theory Comput. 2013, 9, 3084. PubMed