Molecular Basis of Siglec‑7 Recognition by Neisseria meningitidis Serogroup Y CPS: Implications for Immune Evasion

. 2025 May 26 ; 5 (5) : 2257-2269. [epub] 20250430

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40443894

Siglecs, sialic-acid-binding immunoglobulin-like lectins, are key immune cell receptors that recognize sialic acid residues on cell surfaces. Pathogens and tumor cells exploit Siglecs to evade immune responses and modulate immunity, contributing significantly to infectious disease and cancer pathogenesis. Siglec-7, primarily expressed on natural killer (NK) cells, functions as an inhibitory receptor, tightly regulating the immune activity. This study investigates the interaction between Siglec-7 and the capsular polysaccharide (CPS) of Neisseria meningitidis serogroup Y (Men-Y), a bacterium whose sialylated CPS is critical for virulence. We demonstrate that Men-Y CPS binds to inhibitory Siglec-7, potentially dampening immune recognition. We employed a multifaceted approach, combining biochemical and biophysical techniques to dissect this interaction. Enzyme-linked immunosorbent assays (ELISAs) and fluorescence titrations quantified the binding specificity and affinity. Ligand- and protein-based nuclear magnetic resonance (NMR) spectroscopy, coupled with computational modeling, provides detailed molecular insights. We highlight the critical influence of the Men-Y CPS conformation and sialic acid presentation on Siglec-7 binding. The specific arrangement of α-2,6-linked sialic acids on the CPS is crucial for Siglec-7 binding, demonstrating the importance of the CPS 3D structure. Preliminary immunological assays using stimulated U937 cells (a promonocytic cell line) further support the immunomodulatory role of Siglec-7 mediated by Men-Y CPS. These results offer valuable insights into the development of targeted therapeutic strategies against bacterial infections.

Zobrazit více v PubMed

Chang, Y. ; Nizet, V. . Siglecs at the Host – Pathogen Interface; Springer: Singapore, 2020; Vol. 1204, pp 197–214. PubMed PMC

Coccimiglio M., Chiodo F., van Kooyk Y.. The sialic acid-Siglec immune checkpoint: an opportunity to enhance immune responses and therapy effectiveness in melanoma. Br J. Dermatol. 2024;190(5):627–635. doi: 10.1093/bjd/ljad517. PubMed DOI

Chang Y. C., Nizet V.. The interplay between Siglecs and sialylated pathogens. Glycobiology. 2014;24(9):818–825. doi: 10.1093/glycob/cwu067. PubMed DOI PMC

Ibarlucea-Benitez I., Weitzenfeld P., Smith P., Ravetch J. V.. Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity. Proc. Natl. Acad. Sci. U.S.A. 2021;118(26):e2107424118. doi: 10.1073/pnas.2107424118. PubMed DOI PMC

Yoshimura A., Asahina Y., Chang L. Y., Angata T., Tanaka H., Kitajima K., Sato C.. Identification and functional characterization of a Siglec-7 counter-receptor on K562 cells. J. Biol. Chem. 2021;296:100477. doi: 10.1016/j.jbc.2021.100477. PubMed DOI PMC

Yamaji T., Teranishi T., Alphey M. S., Crocker P. R., Hashimoto Y.. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J. Biol. Chem. 2002;277(8):6324–6332. doi: 10.1074/jbc.M110146200. PubMed DOI

Tao L., Wang S., Yang L., Jiang L., Li J., Wang X.. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clin. Exp. Immunol. 2020;201(2):161–170. doi: 10.1111/cei.13444. PubMed DOI PMC

Zheng Y., Ma X., Su D., Zhang Y., Yu L., Jiang F., Zhou X., Yeng F., Ma F.. The Roles of Siglec7 and Siglec9 on Natural Killer Cells in Virus Infection and Tumour Progression. J. Immunol. Res. 2020;2020:1–9. doi: 10.1155/2020/6243819. PubMed DOI PMC

Avril T., Wagner E. R., Willison H. J., Crocker P. R.. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect. Immun. 2006;74(7):4133–4141. doi: 10.1128/IAI.02094-05. PubMed DOI PMC

Yadav S., Rammohan G.. Meningococcal Meningitis. IDCases. 2020;21:e00897.

Colicchio R., Pagliuca C., Ricci S., Scaglione E., Grandgirard D., Masouris I., Farina F., Pagliarulo C., Mantova G., Paragliola L., Leib S. L., Koedel U., Pozzi G., Alifano P., Salvatore P.. Virulence Traits of a Serogroup C Meningococcus and Isogenic cssA Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infect. Immun. 2019;87(4):e00688-18. doi: 10.1128/IAI.00688-18. PubMed DOI PMC

Harrison L. H., Pelton S. I., Wilder-Smith A., Holst J., Safadi M. A., Vazquez J. A., Taha M. K., LaForce F. M., von Gottberg A., Borrow R., Plotkin S. A.. The Global Meningococcal Initiative: recommendations for reducing the global burden of meningococcal disease. Vaccine. 2011;29(18):3363–3371. doi: 10.1016/j.vaccine.2011.02.058. PubMed DOI

Harrison O. B., Claus H., Yiang J., Bennett J. S., Bratcher H. B., Jolley K. A., Corton C., Care R., Poolman J. T., Zollinger W. D.. et al. Description and Nomenclature of Neisseria Meningitidis Capsule Locus. Emerg. Infect. Dis. 2013;19(4):566–573. doi: 10.3201/eid1904.111799. PubMed DOI PMC

Kuttel M. M., Timol Z., Ravenscroft N.. Cross-Protection in Neisseria Meningitidis Serogroups Y and W Polysaccharides: A Comparative Conformational Analysis. Carbohydr. Res. 2017;446–447:40–47. doi: 10.1016/j.carres.2017.05.004. PubMed DOI

Jones C., Virji M., Crocker P. R.. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol. Microbiol. 2003;49(5):1213–1225. doi: 10.1046/j.1365-2958.2003.03634.x. PubMed DOI

Landig C. S., Hazel A., Kellman B. P., Fong J. J., Schwarz F., Agarwal S., Varki N., Massari P., Lewis N. E., Ram S., Varki A.. Evolution of the exclusively human pathogen Neisseria gonorrhoeae: Human-specific engagement of immunoregulatory Siglecs. Evol. Appl. 2019;12(2):337–349. doi: 10.1111/eva.12744. PubMed DOI PMC

Benucci B., Spinello Z., Calvaresi V., Viviani V., Perrotta A., Faleri A., Utrio Lanfaloni S., Pansegrau W., d’Alterio L., Bartolini E., Pinzuti I., Sampieri K., Giordano A., Rappuoli R., Pizza M., Masignani V., Norais N., Maione D., Merola M.. Neisserial adhesin A (NadA) binds human Siglec-5 and Siglec-14 with high affinity and promotes bacterial adhesion/invasion. mBio. 2024;15(8):e0110724. doi: 10.1128/mbio.01107-24. PubMed DOI PMC

Gasparini R., Panatto D., Bragazzi N. L., Lai P. L., Bechini A., Levi M., Durando P., Amicizia D.. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria Meningitidis Vaccines. J. Immunol. Res. 2015;2015:1–26. doi: 10.1155/2015/189153. PubMed DOI PMC

Angata T.. Possible Influences of Endogenous and Exogenous Ligands on the Evolution of Human Siglecs. Front. Immunol. 2018;9:2885. doi: 10.3389/fimmu.2018.02885. PubMed DOI PMC

Hudak J. E., Canham S. M., Bertozzi C. R.. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 2014;10(1):69–75. doi: 10.1038/nchembio.1388. PubMed DOI PMC

Di Carluccio C., Milanesi F., Civera M., Abreu C., Sattin S., Francesconi O., Molinaro A., Vaněk O., Marchetti R., Silipo A.. Tumor Carbohydrate Associated Antigen Analogs as Potential Binders for Siglec-7. Eur. J. Org. Chem. 2023;26:e202300644. doi: 10.1002/ejoc.202300644. DOI

Abreu C., Di Carluccio C., Ječmen T., Skořepa O., Bláha J., Marchetti R., Silipo A., Vaněk O.. Insights into stability, dimerisation, and ligand binding properties of Siglec-7: Isotope labelling in HEK293 cells for protein characterisation by NMR spectroscopy. Int. J. Biol. Macromol. 2025;309:142672. doi: 10.1016/j.ijbiomac.2025.142672. PubMed DOI

Di Carluccio C., Padilla-Cortés L., Tiemblo-Martìn M., Roxana Gheorghita G., Oliva R., Cerofolini L., Masi A. A., Abreu C., Tseng H. K., Molinaro A., Del Vecchio P., Vaněk O., Lin C. C., Marchetti R., Fragai M., Silipo A.. Insights into Siglec-7 binding to gangliosides: NMR protein assignment and the impact of ligand flexibility. Adv. Sci. 2025:2415782. doi: 10.1002/advs.202415782. PubMed DOI

Ribeiro M. M. B., Franquelim H. G., Castanho M. A. R. B., Veiga A. S.. Molecular interaction studies of peptides using steady-state fluorescence intensity. Static (de)­quenching revisited. J. Pept. Sci. 2008;14:401–406. doi: 10.1002/psc.939. PubMed DOI

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009;16:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Case, D. A. ; Ben-Shalom, I. Y. ; Brozell, S. R. ; Cerutti, D. S. ; Cheatham, T. E., III ; Cruzeiro, V.W.D. ; Darden, T. A. ; Duke, R. E. ; Ghoreishi, D. ; Gilson, M. K. ; Gohlke, H. ; Goetz, A. W. ; Greene, D. ; Harris, R. ; Homeyer, N. ; Huang, Y. ; Izadi, S. ; Kovalenko, A. ; Kurtzman, T. ; Lee, T. S. ; LeGrand, S. ; Li, P. ; Lin, C. ; Liu, J. ; Luchko, T. ; Luo, R. ; Mermelstein, D. J. ; Merz, K. M. ; Miao, Y. ; Monard, G. ; Nguyen, C. ; Nguyen, H. ; Omelyan, I. ; Onufriev, A. ; Pan, F. ; Qi, R. ; Roe, D. R. ; Roitberg, A. ; Sagui, C. ; Schott-Verdugo, S. ; Shen, J. ; Simmerling, C. L. ; Smith, J. ; SalomonFerrer, R. ; Swails, J. ; Walker, R. C. ; Wang, J. ; Wei, H. ; Wolf, R. M. ; Wu, X. ; Xiao, L. ; York, D. M. ; Kollman, P. A. . AMBER 2018; University of California: San Francisco, 2018.

Kirschner K. N., Yongye A. B., Tschampel S. M., González-Outeiriño J., Daniels C. R., Foley B. L., Woods R. J.. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008;29(4):622–655. doi: 10.1002/jcc.20820. PubMed DOI PMC

Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C.. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

He X., Man V. H., Yang W., Lee T.-S., Wang J.. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 2020;153:114502. doi: 10.1063/5.0019056. PubMed DOI PMC

Schrödinger, L. ; DeLano, W. . PyMOL 2020. Available from: http://www.pymol.org/pymol.

Humphrey W., Dalke A., Schulten K.. VMD - Visual Molecular Dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Berti F., De Ricco R., Rappuoli R.. Role of O-Acetylation in the Immunogenicity of Bacterial Polysaccharide Vaccines. Molecules. 2018;23(6):1340. doi: 10.3390/molecules23061340. PubMed DOI PMC

Jones C., Lemercinier X.. Use and validation of NMR assays for the identity and O-acetyl content of capsular polysaccharides from Neisseria meningitidis used in vaccine manufacture. J. Pharm. Biomed. Anal. 2002;30:1233–1247. doi: 10.1016/S0731-7085(02)00462-4. PubMed DOI

Di Carluccio C., Forgione R. E., Bosso A., Yokoyama S., Manabe Y., Pizzo E., Molinaro A., Fukase K., Fragai M., Bensing B. A., Marchetti R R., Silipo A.. Molecular recognition of sialoglycans by streptococcal Siglec-like adhesins: Toward the shape of specific inhibitors. RSC Chem. Biol. 2021;2:1618–1630. doi: 10.1039/D1CB00173F. PubMed DOI PMC

Gonzalez-Gil A., Schnaar R. L.. Siglec Ligands. Cells. 2021;10(5):1260. doi: 10.3390/cells10051260. PubMed DOI PMC

Di Carluccio C., Forgione M. C., Martini S., Berti F., Molinaro A., Marchetti R., Silipo A.. Investigation of protein-ligand complexes by ligand-based NMR methods. Carbohydr. Res. 2021;503:108313. doi: 10.1016/j.carres.2021.108313. PubMed DOI

Marchetti R., Perez S., Arda A., Imberty A., Jimenez-Barbero J., Silipo A., Molinaro A.. “Rules of Engagement” of Protein–Glycoconjugate Interactions: A Molecular View Achievable by Using NMR Spectroscopy and Molecular Modeling. ChemistryOpen. 2016;5(4):274–296. doi: 10.1002/open.201600024. PubMed DOI PMC

Nieto-Fabregat F., Lenza M. P., Marseglia A., Di Carluccio C., Molinaro A., Silipo A., Marchetti R.. Computational toolbox for the analysis of protein–glycan interactions. Beilstein J. Org. Chem. 2024;20:2084–2107. doi: 10.3762/bjoc.20.180. PubMed DOI PMC

Soares C. O., Grosso A. S., Ereño-Orbea J., Coelho H., Marcelo F.. Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling. Front. Mol. Biosci. 2021;8:727847. doi: 10.3389/fmolb.2021.727847. PubMed DOI PMC

Pietri G. P., Bertuzzi S., Karnicar K., Unione L., Lisnic B., Malic S., Miklic K., Novak M., Calloni I., Santini L., Usenik A., Romano M. R., Adamo R., Jonjic S., Turk D., Jiménez-Barbero J., Lenac Rovis T.. Antigenic determinants driving serogroup-specific antibody response to Neisseria meningitidis C, W, and Y capsular polysaccharides: Insights for rational vaccine design. Carbohydr. Polym. 2024;341:122349. doi: 10.1016/j.carbpol.2024.122349. PubMed DOI

Kirschner K. N., Yongye A. B., Tschampel S. M., González-Outeiriño J., Daniels C. R., Foley B. L., Woods R. J.. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008;29:622–655. doi: 10.1002/jcc.20820. PubMed DOI PMC

Attrill H., Imamura A., Sharma R. S., Kiso M., Crocker P. R., van Aalten D. M. F.. Siglec-7 Undergoes a Major Conformational Change When Complexed with the α-(2,8)-Disialylganglioside GT1b. J. Biol. Chem. 2006;281:32774–32783. doi: 10.1074/jbc.M601714200. PubMed DOI

Di Carluccio, C. ; Forgione, R. E. ; Molinaro, A. ; Crocker, P. R. ; Marchetti, R. ; Silipo, A. . Exploring the fascinating world of sialoglycans in the interplay with Siglecs; The Royal Society of Chemistry, 2020; Vol. 44, pp 31–55.

Crocker P. R., Paulson J. C., Varki A.. Siglecs and Their Roles in the Immune System. Nat. Rev. Immunol. 2007;7:255–266. doi: 10.1038/nri2056. PubMed DOI

Forgione R. E., Nieto F. F., Di Carluccio C., Milanesi F., Fruscella M., Papi F., Nativi C., Molinaro A., Palladino P., Scarano S.. et al. Conformationally Constrained Sialyl Analogues as New Potential Binders of h-CD22. ChemBioChem. 2022;23:e202200076. doi: 10.1002/cbic.202200076. PubMed DOI PMC

Forgione R. E., Di Carluccio C., Guzmán-Caldentey J., Gaglione R., Battista F., Chiodo F., Manabe Y., Arciello A., Del Vecchio P., Fukase K., Molinaro A., Martín-Santamaría S., Crocker P. R., Marchetti R., Silipo A.. Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. iScience. 2020;23:101231. doi: 10.1016/j.isci.2020.101231. PubMed DOI PMC

Pirone L., Lenza M. P., Di Gaetano S., Capasso D., Filocaso M., Russo R., Di Carluccio C., Saviano M., Silipo A., Pedone E.. Biophysical and Structural Characterization of the Interaction between Human Galectin-3 and the Lipopolysaccharide from Pseudomonas aeruginosa . Int. J. Mol. Sci. 2024;25:2895. doi: 10.3390/ijms25052895. PubMed DOI PMC

Lamprinaki D., Garcia-Vello P., Marchetti R., Hellmich C., McCord K. A., Bowles K. M., Macauley M. S., Silipo A., De Castro C., Crocker P. R., Juge N.. Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp. animalis. Front Immunol. 2021;12(12):744184. doi: 10.3389/fimmu.2021.744184. PubMed DOI PMC

Forrester M. A., Wassall H. J., Hall L. S., Cao H., Wilson H. M., Barker R. N., Vickers M. A.. Similarities and differences in surface receptor expression by THP-1 monocytes and differentiated macrophages polarized using seven different conditioning regimens. Cell. Immunol. 2018;332:58–76. doi: 10.1016/j.cellimm.2018.07.008. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...