Design, synthesis and simulation of fractional-order element using MOS transistors as distributed resistive capacitive devices
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA23-06070S
Grantová Agentura České Republiky
PubMed
40289096
PubMed Central
PMC12034758
DOI
10.1038/s41598-025-96539-w
PII: 10.1038/s41598-025-96539-w
Knihovny.cz E-zdroje
- Klíčová slova
- Distributed element, Fractional-order element, Fractor, Genetic algorithm, MOS transistor,
- Publikační typ
- časopisecké články MeSH
The article presents a synthesis method to design electrical circuit elements with fractional-order impedance, referred to as a Fractional-Order Element (FOE) or Fractor, that can be implemented by Metal-Oxide-Semiconductor (MOS) transistors. This provides an approach to realize this class of device using current integrated circuit manufacturing technologies. For this synthesis MOS transistors are treated as uniform distributed resistive-capacitive layer structures. The synthesis approach adopts a genetic algorithm to generate the MOS structures interconnections and dimensions to realize an FOE with user-defined constant input admittance phase, allowed ripple deviations, and target frequency range. A graphical user interface for the synthesis process is presented to support its wider adoption. We synthetized and present FOEs with admittance phase from 5 to 85 degrees. The design approach is validated using Cadence post-layout simulations of an FOE design with admittance phase of 74 ± 1 degrees realized using native n-channel MOS devices in TSMC 65 nm technology. Overall, the post-layout simulations demonstrate magnitude and phase errors less than 0.5% and 0.1 degrees, respectively, compared to the synthesis expected values in the frequency band from 1 kHz to 10 MHz. This supports that the design approach is appropriate for the future fabrication and validation of FOEs using this process technology.
Zobrazit více v PubMed
Shah, Z. M., Kathjoo, M. Y., Khanday, F. A., Biswas, K. & Psychalinos, C. A survey of single and multi-component Fractional-Order Elements (FOEs) and their applications. DOI
Biswas, K., Sen, S. & Dutta, P. K. Realization of a constant phase element and its performance study in a differentiator circuit. DOI
Adhikary, A., Khanra, M., Sen, S., Biswas, K. Realization of a carbon nanotube based electrochemical fractor. In
Elshurafa, M., Almadhoun, N., Salama, K. & Alshareef, H. Microscale electrostatic fractional-order capacitors using reduced graphene oxide percolated polymer composites.
Buscarino, A. et al. Carbon Black based capacitive fractional-order element towards a new electronic device. DOI
Caponetto, R., Graziani, S., Pappalardo, F. L. & Sapuppo, F. Experimental characterization of ionic polymer metal composite as a novel fractional order element.
Agambayev, A., Patole, S., Bagci, H. & Salama, K. N. Tunable fractional-order capacitor using layered ferroelectric polymers. DOI
Carlson, G. E. & Halijak, C. A. Approximation of fractional capacitors (1/s)^(1/n) by a regular newton process. DOI
El-Khazali, R. On the biquadratic approximation of fractional-order Laplacian operators. DOI
Tsirimokou, G. A systematic procedure for deriving RC networks of fractional order elements emulators using MATLAB. DOI
Kapoulea, S. Design of fractional-order circuits with reduced spread of element values. Master thesis. RN: 1058034. https://www.researchgate.net/profile/Stavroula-Kapoulea/publication/327396441_Design_of_Fractional-Order_Circuits_with_Reduced_Spread_of_Element_Values/links/5b8d2494299bf1d5a73ab881/Design-of-Fractional-Order-Circuits-with-Reduced-Spread-of-Element-Values.pdf (2018).
Tsirimokou, G., Psychalinos, C. & Elwakil, A. S. Emulation of a constant phase element using operational transconductance amplifiers. DOI
Elwakil, A. S. Fractional-order circuits and systems: an emerging interdisciplinary research area. DOI
Ortigueira, M. D. An introduction to the fractional continuous-time linear systems: the 21st century systems. DOI
Wang, J., Ye, Y., Pan, X. & Gao, X. Parallel-type fractional zero-phase filtering for ECG signal denoising. DOI
Martinek, R., et al. Advanced bioelectrical signal processing methods: past, present and future approach-part II: brain signals. PubMed PMC
Freeborn, T. J. A survey of fractional-order circuit models for biology and biomedicine. DOI
Mohsen, M., Said, L. A., Madian, A. H., Radwan, A. G. & Elwakil, A. S. Fractional-order bio-impedance modeling for interdisciplinary applications: a review. DOI
AboBakr, A., Said, L. A., Madian, A. H., Elwakil, A. S. & Radwan, A. G. Experimental comparison of integer/fractional-order electrical models of plant. DOI
Palaniappan, A., Palermo, S.A. Design methodology for power efficiency optimization of high-speed equalized-electrical I/O architectures. In
Tepljakov, A. et al. Towards industrialization of FOPID controllers: a survey on milestones of fractional-order control and pathways for future developments. DOI
Zhang, Q. & Wei, K. A comparative study of fractional-order models for supercapacitors in electric vehicles. DOI
Wang, Y. & Zhao, G. A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy. DOI
Sierociuk, D. et al. Diffusion process modeling by using fractional-order models.
Ushakov, P. A. et al. Synthesis of elements with fractional-order impedance based on homogenous distributed resistive-capacitive structures and genetic algorithm. PubMed DOI PMC
Christie, C., et al. Design and Examples of Fractional-Order Capacitor Based on C-R-NC Layer Structure. In
Jowett, C. E.
Kadlcik, L. & Horsky, P. A CMOS follower-type voltage regulator with a distributed-element fractional-order control.
Kubanek, D., Shadrin, A., Jerabek, J. MOS transistor as a distributed resistive-capacitive element with admittance of fractional order 0.5. In
Kuntman, H., Özenli, D. MOS-Only and MOS-C circuits. In
Arslan, E. et al. MOS-only second order current-mode LP/BP filter. DOI
Metin, B., Basaran, Y. & Cicekoglu, O. MOSFET-C current mode filter for secure communication applications. DOI
Tsividis, Y., Banu, M. & Khoury, J. Continuous-time MOSFET-C filters in VLSI. DOI
Agambayev, A. et al. An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite. DOI
Tsirimokou, G., Psychalinos, C., Elwakil, A. S. & Salama, K. N. Experimental verification of on-chip CMOS fractional-order capacitor emulators. DOI
John, D. A., Banerjee, S., Bohannan, G. W. & Biswas, K. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. DOI
Emanovic, E., Vonic, M., Jurisic, D. & Psychalinos, C. Digitally controlled fractional-order elements using OTA-C structures.
Caponetto, R., Graziani, S. & Murgano, E. Realization of a fractional-order RLC circuit via constant phase element. DOI
Bohannan, G. W., Valério, D. & Ortigueira, M. D. Fractional model of a fractor. DOI
Ahmed, K. U. Immittance matrices for five-layer uniform distributed, parameter R2–C21-R1-C10-Ginfinity.
Grainger, J. J. & Stevenson, W. D.
Liu, W., Jin, X., Cao, K., Hu, C.
Ho, C., Ruehli, A. & Brennan, P. The modified nodal approach to network analysis. DOI
Sharma, S. & Kumar, V. A comprehensive review on multi-objective optimization techniques: past, present and future. DOI
Katoch, S., Chauhan, S. S. & Kumar, S. S. A review on genetic algorithm: past, present, and future. PubMed DOI PMC
Valsa, J. & Vlach, J. RC models of a constant phase element. DOI