Design, synthesis and simulation of fractional-order element using MOS transistors as distributed resistive capacitive devices

. 2025 Apr 27 ; 15 (1) : 14717. [epub] 20250427

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40289096

Grantová podpora
GA23-06070S Grantová Agentura České Republiky

Odkazy

PubMed 40289096
PubMed Central PMC12034758
DOI 10.1038/s41598-025-96539-w
PII: 10.1038/s41598-025-96539-w
Knihovny.cz E-zdroje

The article presents a synthesis method to design electrical circuit elements with fractional-order impedance, referred to as a Fractional-Order Element (FOE) or Fractor, that can be implemented by Metal-Oxide-Semiconductor (MOS) transistors. This provides an approach to realize this class of device using current integrated circuit manufacturing technologies. For this synthesis MOS transistors are treated as uniform distributed resistive-capacitive layer structures. The synthesis approach adopts a genetic algorithm to generate the MOS structures interconnections and dimensions to realize an FOE with user-defined constant input admittance phase, allowed ripple deviations, and target frequency range. A graphical user interface for the synthesis process is presented to support its wider adoption. We synthetized and present FOEs with admittance phase from 5 to 85 degrees. The design approach is validated using Cadence post-layout simulations of an FOE design with admittance phase of 74 ± 1 degrees realized using native n-channel MOS devices in TSMC 65 nm technology. Overall, the post-layout simulations demonstrate magnitude and phase errors less than 0.5% and 0.1 degrees, respectively, compared to the synthesis expected values in the frequency band from 1 kHz to 10 MHz. This supports that the design approach is appropriate for the future fabrication and validation of FOEs using this process technology.

Zobrazit více v PubMed

Shah, Z. M., Kathjoo, M. Y., Khanday, F. A., Biswas, K. & Psychalinos, C. A survey of single and multi-component Fractional-Order Elements (FOEs) and their applications. Microelectron. J.84, 9–25 (2019).

Biswas, K., Sen, S. & Dutta, P. K. Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circ. Syst. Analog. Digit. Signal Process.53(9), 802–806 (2006).

Adhikary, A., Khanra, M., Sen, S., Biswas, K. Realization of a carbon nanotube based electrochemical fractor. In Proc. of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 2329–2332 (2015).

Elshurafa, M., Almadhoun, N., Salama, K. & Alshareef, H. Microscale electrostatic fractional-order capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett.102(232901), 1–4 (2013).

Buscarino, A. et al. Carbon Black based capacitive fractional-order element towards a new electronic device. AEU Int. J. Electron. Commun.84, 307–312 (2018).

Caponetto, R., Graziani, S., Pappalardo, F. L. & Sapuppo, F. Experimental characterization of ionic polymer metal composite as a novel fractional order element. Adv. Math. Phys.2013, 953695 (2013).

Agambayev, A., Patole, S., Bagci, H. & Salama, K. N. Tunable fractional-order capacitor using layered ferroelectric polymers. AIP Adv.7, 095202 (2017).

Carlson, G. E. & Halijak, C. A. Approximation of fractional capacitors (1/s)^(1/n) by a regular newton process. IEEE Trans. Circ. Theory11(2), 210–213 (1964).

El-Khazali, R. On the biquadratic approximation of fractional-order Laplacian operators. Analog Integr. Circ. Signal Process.82(3), 503–517 (2015).

Tsirimokou, G. A systematic procedure for deriving RC networks of fractional order elements emulators using MATLAB. AEU Int. J. Electron. Commun.78, 7–14 (2017).

Kapoulea, S. Design of fractional-order circuits with reduced spread of element values. Master thesis. RN: 1058034. https://www.researchgate.net/profile/Stavroula-Kapoulea/publication/327396441_Design_of_Fractional-Order_Circuits_with_Reduced_Spread_of_Element_Values/links/5b8d2494299bf1d5a73ab881/Design-of-Fractional-Order-Circuits-with-Reduced-Spread-of-Element-Values.pdf (2018).

Tsirimokou, G., Psychalinos, C. & Elwakil, A. S. Emulation of a constant phase element using operational transconductance amplifiers. Analog. Integr. Circ. Signal Process.85(3), 413–423 (2015).

Elwakil, A. S. Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circ. Syst. Mag.10(4), 40–50 (2010).

Ortigueira, M. D. An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circ. Syst. Mag.8(3), 19–26 (2008).

Wang, J., Ye, Y., Pan, X. & Gao, X. Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomed. Signal Process. Control18, 36–41 (2015).

Martinek, R., et al. Advanced bioelectrical signal processing methods: past, present and future approach-part II: brain signals. Sens. (Basel)21(19),  6343 (2021). PubMed PMC

Freeborn, T. J. A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circ. Syst.3(3), 416–424 (2013).

Mohsen, M., Said, L. A., Madian, A. H., Radwan, A. G. & Elwakil, A. S. Fractional-order bio-impedance modeling for interdisciplinary applications: a review. IEEE Access9, 33158–33168 (2021).

AboBakr, A., Said, L. A., Madian, A. H., Elwakil, A. S. & Radwan, A. G. Experimental comparison of integer/fractional-order electrical models of plant. AEU Int. J. Electron. Commun.80, 1–9 (2017).

Palaniappan, A., Palermo, S.A. Design methodology for power efficiency optimization of high-speed equalized-electrical I/O architectures. In IEEE Transactions on Very Large Scale Integration (VLSI), IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21 1421–1431 (2013).

Tepljakov, A. et al. Towards industrialization of FOPID controllers: a survey on milestones of fractional-order control and pathways for future developments. IEEE Access9, 21016–21042 (2021).

Zhang, Q. & Wei, K. A comparative study of fractional-order models for supercapacitors in electric vehicles. Int. J. Electrochem. Sci.19(1), 100441 (2024).

Wang, Y. & Zhao, G. A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy. Control Eng. Pract.133, 105451 (2023).

Sierociuk, D. et al. Diffusion process modeling by using fractional-order models. Appl. Math. Comput.257, 2–11 (2015).

Ushakov, P. A. et al. Synthesis of elements with fractional-order impedance based on homogenous distributed resistive-capacitive structures and genetic algorithm. J. Adv. Res.25, 275–283 (2020). PubMed PMC

Christie, C., et al. Design and Examples of Fractional-Order Capacitor Based on C-R-NC Layer Structure. In Proc. of the 2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Ghent, Belgium 91–96 (2023).

Jowett, C. E. The Engineering of Microelectronic Thin and Thick Films (The Macmillan Press Ltd, 1976).

Kadlcik, L. & Horsky, P. A CMOS follower-type voltage regulator with a distributed-element fractional-order control. IEEE Trans. Circ. Syst.65(9), 2753–2763 (2018).

Kubanek, D., Shadrin, A., Jerabek, J. MOS transistor as a distributed resistive-capacitive element with admittance of fractional order 0.5. In Proc. of the 2024 16th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Meloneras, Gran Canaria, Spain (2024).

Kuntman, H., Özenli, D. MOS-Only and MOS-C circuits. In Trends in Circuit Design for Analog Signal Processing. Analog Circuits and Signal Processing (Springer, 2022).

Arslan, E. et al. MOS-only second order current-mode LP/BP filter. Analog. Integr. Circ. Sig. Process.74, 105–109 (2013).

Metin, B., Basaran, Y. & Cicekoglu, O. MOSFET-C current mode filter for secure communication applications. AEU-Int. J. Electron. Commun.143, 154017 (2022).

Tsividis, Y., Banu, M. & Khoury, J. Continuous-time MOSFET-C filters in VLSI. IEEE J. Solid-State Circ.21(1), 15–30 (1986).

Agambayev, A. et al. An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite. Appl. Phys. Lett.113, 9 (2018).

Tsirimokou, G., Psychalinos, C., Elwakil, A. S. & Salama, K. N. Experimental verification of on-chip CMOS fractional-order capacitor emulators. Electron. Lett.52(15), 1298–1300 (2016).

John, D. A., Banerjee, S., Bohannan, G. W. & Biswas, K. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett.110, 16 (2017).

Emanovic, E., Vonic, M., Jurisic, D. & Psychalinos, C. Digitally controlled fractional-order elements using OTA-C structures. Electron. (Basel)13(11), 2066 (2024).

Caponetto, R., Graziani, S. & Murgano, E. Realization of a fractional-order RLC circuit via constant phase element. Int. J. Dyn. Control9(4), 1589–1599 (2021).

Bohannan, G. W., Valério, D. & Ortigueira, M. D. Fractional model of a fractor. IFAC-PapersOnLine58(12), 508–512 (2024).

Ahmed, K. U. Immittance matrices for five-layer uniform distributed, parameter R2–C21-R1-C10-Ginfinity. Netw. J. Inst. Electron. Telecommun. Eng.18(11), 536–540 (1972).

Grainger, J. J. & Stevenson, W. D. Power System Analysis (McGraw-Hill, 1994).

Liu, W., Jin, X., Cao, K., Hu, C. BSIM4.1.0 MOSFET Model-User’s Manual. Berkeley: University of California. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2000/ERL-00-48.pdf (2000).

Ho, C., Ruehli, A. & Brennan, P. The modified nodal approach to network analysis. IEEE Trans. Circ. Syst.22(6), 504–509 (1975).

Sharma, S. & Kumar, V. A comprehensive review on multi-objective optimization techniques: past, present and future. Arch. Comput. Methods Eng.29(7), 5605–5633 (2022).

Katoch, S., Chauhan, S. S. & Kumar, S. S. A review on genetic algorithm: past, present, and future. Multimedia Tools Appl.80(5), 8091–8126 (2021). PubMed PMC

Valsa, J. & Vlach, J. RC models of a constant phase element. Int. J. Circ. Theory Appl.41(1), 59–67 (2013).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...