Preparation and Characterization of Submicrometer and Nanometer Cellulose Fiber with Biogenic SiO2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education,
PubMed
40292638
PubMed Central
PMC11944981
DOI
10.3390/polym17060761
PII: polym17060761
Knihovny.cz E-zdroje
- Klíčová slova
- chemical properties, nanocellulose, renewable resources, rice husk, silica, thermal stability, wet grinding,
- Publikační typ
- časopisecké články MeSH
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods are tested to extract the nanocellulose, namely hand milling, ball milling, and wet milling using a high-shear wet media mill from Masuko Sangyo Co., Ltd., Kawaguchi-city, Japan. A range of analytical methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), are utilized to characterize the morphology, elemental composition, thermal stability, and chemical properties of the samples. The study revealed that among the tested methods, only wet milling successfully produced cellulose nanofibrils and silica nanoparticles, forming a biogenic organic-inorganic nanohybrid system. The nanofibers had lengths in the range of 120 nm and below, while the nanoparticles were in the tens of nanometers. The silica nanoparticles were found to adhere to the cellulose nanofibrils, forming a biogenic organic-inorganic nanohybrid system, with potential applications across diverse fields, including biomedical (drug delivery, biosensing, bone regeneration, and wound healing), cosmetic (skin and dental care), technical (insulating aerogels, flame retardants, and UV-absorbing pigments), and food applications (dietary supplements, thickeners).
Zobrazit více v PubMed
FAOSTAT. [(accessed on 25 August 2024)]. Available online: https://www.fao.org/faostat/en/#data/QCL.
Oliveira J.P.D., Bruni G.P., Lima K.O., Halal S.L.M.E., Rosa G.S.D., Dias A.R.G., Zavareze E.D.R. Cellulose Fibers Extracted from Rice and Oat Husks and Their Application in Hydrogel. Food Chem. 2017;221:153–160. doi: 10.1016/j.foodchem.2016.10.048. PubMed DOI
Kroisová D., Dvořáčková Š., Yahya R., Kůsa P. Key Engineering Materials. Volume 927. Trans Tech Publication Ltd.; Wollerau, Swirtzerland: 2022. Rice Husks-Potential Source of Cellulose Microfibers/Nanofibers and Biogenic Silicon Dioxide Nanoparticles; pp. 149–153.
Thomas B., Raj M.C., Joy J., Moores A., Drisko G.L., Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 2018;118:11575–11625. doi: 10.1021/acs.chemrev.7b00627. PubMed DOI
Marchessault R.H., Sundararajan P.R. The polysaccharides. Elsevier; Amsterdam, The Netherlands: 1983. Cellulose; pp. 11–95.
Zulaikha W., Hassan M.Z., Ismail Z. Recent Development of Natural Fibre for Nanocellulose Extraction and Application. Mater. Today Proc. 2022;66:2265–2273. doi: 10.1016/j.matpr.2022.06.221. DOI
Heinze T. Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Springer; Cham, Switzerland: 2015. Cellulose: Structure and Properties; pp. 1–52.
Mutwil M., Debolt S., Persson S. Cellulose Synthesis: A Complex Complex. Curr. Opin. Plant Biol. 2008;11:252–257. doi: 10.1016/j.pbi.2008.03.007. PubMed DOI
Pinto J.R. Production of Cellulose-Binding Domains by Proteolysis: Studies on the Adsorption and Modification of Cellulose Fibres. 2007. [(accessed on 25 October 2024)]. Available online: https://repositorium.sdum.uminho.pt/handle/1822/8615.
Krässig H.A. Cellulose: Structure, Accessibility and Reactivity. Gordon and Breach Science Publ.; London, UK: 1993.
Bhakar K., Nemiwal M., Kumar D. Nanocellulose and Its Composites for Water Treatment Application. CRC Press; Boca Raton, FL, USA: 2021. Potential Differences between Cellulose Nanocrystal, Microfibrillated Cellulose, and Hairy Cellulose Nanocrystalloid in Water Purification; pp. 63–76.
Phanthong P., Reubroycharoen P., Hao X., Xu G., Abudula A., Guan G. Nanocellulose: Extraction and Application. Carbon Resour. Convers. 2018;1:32–43. doi: 10.1016/j.crcon.2018.05.004. DOI
Koshani R., Eiyegbenin J.E., Wang Y., Van De Ven T.G.M. Synthesis and Characterization of Hairy Aminated Nanocrystalline Cellulose. J. Colloid Interface Sci. 2022;607:134–144. doi: 10.1016/j.jcis.2021.08.172. PubMed DOI
Kumar S., Ngasainao M.R., Sharma D., Sengar M., Gahlot A.P.S., Shukla S., Kumari P. Contemporary Nanocellulose-Composites: A New Paradigm for Sensing Applications. Carbohydr. Polym. 2022;298:120052. doi: 10.1016/j.carbpol.2022.120052. PubMed DOI
Kargarzadeh H., Ioelovich M., Ahmad I., Thomas S., Dufresne A. Methods for Extraction of Nanocellulose from Various Sources. Handb. Nanocellul. Cellul. Nanocompos. 2017;1:1–49.
Yahya R., Kroisová D., Knap A., Dvořáčková Š. Effect of micro–and nano-fillers on the coefficient of thermal expansion of composite systems with potential applications in stomatology; Proceedings of the 14th International Conference on Nanomaterials—Research & Application; Brno, Czech Republic. 19–21 October 2022; pp. 216–222.
Shen Y. Rice Husk Silica Derived Nanomaterials for Sustainable Applications. Renew. Sustain. Energy Rev. 2017;80:453–466. doi: 10.1016/j.rser.2017.05.115. DOI
Battegazzore D., Bocchini S., Alongi J., Frache A., Marino F. Cellulose Extracted from Rice Husk as Filler for Poly (Lactic Acid): Preparation and Characterization. Cellulose. 2014;21:1813–1821. doi: 10.1007/s10570-014-0207-5. DOI
Wang Z., Han E., Ke W. Effect of Acrylic Polymer and Nanocomposite with Nano-SiO2 on Thermal Degradation and Fire Resistance of APP–DPER–MEL Coating. Polym. Degrad. Stab. 2006;91:1937–1947. doi: 10.1016/j.polymdegradstab.2006.03.001. DOI
Cruz G., Braz C.E., Ferreira S.L., dos Santos A.M., Crnkovic P.M. Physicochemical Properties of Brazilian Biomasses: Potential Applications as Renewable Energy Source; Proceedings of the 22nd International Congress of Mechanical Engineering; Ribeirao Preto, Brasil. 3–7 November 2013; pp. 10072–10084.
El Nemr A., Eleryan A., Mashaly M., Khaled A. Comparative Study of Synthesis of Cellulose Propionate from Different Sources Using NIS as a New Catalyst. Polym. Bull. 2021;78:4369–4386. doi: 10.1007/s00289-020-03313-1. DOI
Trisnawati L., Helmiyati H. Cellulose-Fe3O4 Nanocomposite Based on Rice Husk as Catalyst for Synthesis of Methyl Ester from Waste Cooking Oil. IOP Conf. Ser. Mater. Sci. Eng. 2020;763:012012. doi: 10.1088/1757-899X/763/1/012012. DOI
Prasetyoko D., Ramli Z., Endud S., Hamdan H., Sulikowski B. Conversion of Rice Husk Ash to Zeolite Beta. Waste Manag. 2006;26:1173–1179. doi: 10.1016/j.wasman.2005.09.009. PubMed DOI
Battegazzore D., Bocchini S., Alongi J., Frache A. Rice Husk as Bio-Source of Silica: Preparation and Characterization of PLA–Silica Bio-Composites. RSC Adv. 2014;4:54703–54712. doi: 10.1039/C4RA05991C. DOI
Li J., Zhang L.-P., Peng F., Bian J., Yuan T.-Q., Xu F., Sun R.-C. Microwave-Assisted Solvent-Free Acetylation of Cellulose with Acetic Anhydride in the Presence of Iodine as a Catalyst. Molecules. 2009;14:3551–3566. doi: 10.3390/molecules14093551. PubMed DOI PMC
Driscoll K.E., Guthrie G.D. Comprehensive Toxicology. Elsevier; Amsterdam, The Netherlands: 2010. Crystalline Silica and Silicosis; pp. 331–350.
Di Febo R., Casas L., Del Campo Á.A., Rius J., Vallcorba O., Melgarejo J.C., Capelli C. Recognizing and Understanding Silica-Polymorph Microcrystals in Ceramic Glazes. J. Eur. Ceram. Soc. 2020;40:6188–6199. doi: 10.1016/j.jeurceramsoc.2020.05.063. DOI
Lee T., Othman R., Yeoh F.-Y. Development of Photoluminescent Glass Derived from Rice Husk. Biomass Bioenergy. 2013;59:380–392. doi: 10.1016/j.biombioe.2013.08.028. DOI
Yang H., Yan R., Chen H., Lee D.H., Zheng C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel. 2007;86:1781–1788. doi: 10.1016/j.fuel.2006.12.013. DOI
Zou Y., Yang T. Rice Bran and Rice Bran Oil. Elsevier; Amsterdam, The Netherlands: 2019. Rice Husk, Rice Husk Ash and Their Applications; pp. 207–246.
Yue Y. A Comparative Study of Cellulose I and II and Fibers and Nanocrystals. Louisiana State University and Agricultural & Mechanical College; Baton Rouge, LA, USA: 2011.
Shimazaki Y., Miyazaki Y., Takezawa Y., Nogi M., Abe K., Ifuku S., Yano H. Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites. Biomacromolecules. 2007;8:2976–2978. doi: 10.1021/bm7004998. PubMed DOI
Lu P., Hsieh Y.-L. Preparation and Properties of Cellulose Nanocrystals: Rods, Spheres, and Network. Carbohydr. Polym. 2010;82:329–336. doi: 10.1016/j.carbpol.2010.04.073. DOI