Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40298666
PubMed Central
PMC12024457
DOI
10.3390/antiox14040412
PII: antiox14040412
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, apoptosis, cancer, curcumin mimics, ferroptosis, oxidative stress,
- Publikační typ
- časopisecké články MeSH
Curcumin is recognized for its diverse biological activities, including the ability to induce apoptosis and ferroptosis. Therefore, it represents a promising candidate for the development of new compounds with neuroprotective and anticancer properties. In order to synthesize mimics with improved pharmacokinetic properties (better solubility and stability than curcumin) here, we present the design and synthesis of novel curcumin analogues named Ethylphosphonate-based curcumin mimics (EPs), which preserve the pharmacophoric features of curcumin. New EP mimics were synthesized by tyrosol- and melatonin-based building blocks using an orthogonal protection approach of the different precursors' OH functions with good yields and in a few steps. Comparative screenings of the cytotoxic and cytoprotective properties (curcumin was used as a reference compound) were carried out on all new mimics in different cell lines (HeLa, A375, WM266, MDA-MB-231, LX2, and HDF). Assays with inhibitors of ferroptosis (Ferrostatin-1, Fer-1) and apoptosis (Quinoline-Val-Asp-difluorophenoxymethyl ketone, Q-VD), in combination with curcumin, suggested the specific cell death pathway (apoptotic or ferroptotic) of EPs, depending on the aromatic moieties contained in them. Interestingly, EP4 exhibited substantial cytotoxic effects against various human cancer cell lines (HeLa, A375, WM266) while sparing normal cells (HDFs). EP4 displayed a five-times-higher toxicity in triple-negative MDA-MB-231 and LX2 stellate cells than curcumin. The cytotoxicity exerted by EP4 involves only an apoptotic mechanism, contrary to curcumin, which exerts both apoptotic and ferroptotic effects. Additionally, EP4 was also found to be a very potent inhibitor of the ubiquitin-activating enzyme E1, reinforcing the anticancer potential of this compound. Furthermore, EP2 possesses high antioxidant properties, efficiently protects against cell death by ferroptosis, and inhibits the amyloid aggregation involved in AD.
Department of Chemical Sciences University of Napoli Federico 2 Via Cintia 4 80126 Naples Italy
Department of Physics Ettore Pancini University of Naples Federico 2 Via Cintia 4 80126 Naples Italy
Department of Physics University of Helsinki 00014 Helsinki Finland
Heidelberg University Biochemistry Center 69120 Heidelberg Germany
Istituto di Cristallografia National Research Council Via Paolo Gaifami 18 95125 Catania Italy
Zobrazit více v PubMed
Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI
Choudhary S., Singh P.K., Verma H., Singh H., Silakari O. Success Stories of Natural Product-Based Hybrid Molecules for Multi-Factorial Diseases. Eur. J. Med. Chem. 2018;151:62–97. doi: 10.1016/j.ejmech.2018.03.057. PubMed DOI
Zhou Z., Li J., Zhang X. Natural Flavonoids and Ferroptosis: Potential Therapeutic Opportunities for Human Diseases. J. Agric. Food Chem. 2023;71:5902–5916. doi: 10.1021/acs.jafc.2c08128. PubMed DOI
Gali-Muhtasib H., Hmadi R., Kareh M., Tohme R., Darwiche N. Cell Death Mechanisms of Plant-Derived Anticancer Drugs: Beyond Apoptosis. Apoptosis. 2015;20:1531–1562. PubMed
Koeberle S.C., Kipp A.P., Stuppner H., Koeberle A. Ferroptosis-Modulating Small Molecules for Targeting Drug-Resistant Cancer: Challenges and Opportunities in Manipulating Redox Signaling. Med. Res. Rev. 2023;43:614–682. doi: 10.1002/med.21933. PubMed DOI PMC
Devisscher L., Van Coillie S., Hofmans S., Van Rompaey D., Goossens K., Meul E., Maes L., De Winter H., Van Der Veken P., Vandenabeele P., et al. Discovery of Novel, Drug-Like Ferroptosis Inhibitors with in Vivo Efficacy. J. Med. Chem. 2018;61:10126–10140. doi: 10.1021/acs.jmedchem.8b01299. PubMed DOI
Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042. PubMed DOI PMC
Ryan S.K., Ugalde C.L., Rolland A.S., Skidmore J., Devos D., Hammond T.R. Therapeutic Inhibition of Ferroptosis in Neurodegenerative Disease. Trends Pharmacol. Sci. 2023;44:674–688. doi: 10.1016/j.tips.2023.07.007. PubMed DOI
Wang Y., Wu S., Li Q., Sun H., Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. Adv. Sci. 2023;10:2300325. doi: 10.1002/advs.202300325. PubMed DOI PMC
Zhang S., Hu R., Geng Y., Chen K., Wang L., Imam M.U. The Regulatory Effects and the Signaling Pathways of Natural Bioactive Compounds on Ferroptosis. Foods. 2021;10:2952. doi: 10.3390/foods10122952. PubMed DOI PMC
Gu F., Zhu M., Shi J., Hu Y., Zhao Z. Enhanced Oxidative Stress Is an Early Event during Development of Alzheimer-like Pathologies in Presenilin Conditional Knock-out Mice. Neurosci. Lett. 2008;440:44–48. doi: 10.1016/j.neulet.2008.05.050. PubMed DOI
Lesjak M., Simin N., Srai S.K.S. Can Polyphenols Inhibit Ferroptosis? Antioxidants. 2022;11:150. doi: 10.3390/antiox11010150. PubMed DOI PMC
Kajarabille N., Latunde-Dada G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019;20:4968. doi: 10.3390/ijms20194968. PubMed DOI PMC
Esatbeyoglu T., Huebbe P., Ernst I.M.A., Chin D., Wagner A.E., Rimbach G. Curcumin-From Molecule to Biological Function. Angew. Chem. Int. Ed. 2012;51:5308–5332. doi: 10.1002/anie.201107724. PubMed DOI
Patel S.S., Acharya A., Ray R.S., Agrawal R., Raghuwanshi R., Jain P. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2020;60:887–939. PubMed
Mortezaee K., Salehi E., Mirtavoos-mahyari H., Motevaseli E., Najafi M., Farhood B., Rosengren R.J., Sahebkar A. Mechanisms of Apoptosis Modulation by Curcumin: Implications for Cancer Therapy. J. Cell. Physiol. 2019;234:12537–12550. PubMed
El-Saadony M.T., Yang T., Korma S.A., Sitohy M., El-Mageed T.A.A., Selim S., Al Jaouni S.K., Salem H.M., Mahmmod Y., Soliman S.M., et al. Impacts of Turmeric and Its Principal Bioactive Curcumin on Human Health: Pharmaceutical, Medicinal, and Food Applications: A Comprehensive Review. Front. Nutr. 2023;9:1040259. doi: 10.3389/fnut.2022.1040259. PubMed DOI PMC
Nie A., Shen C., Zhou Z., Wang J., Sun B., Zhu C. Ferroptosis: Potential Opportunities for Natural Products in Cancer Therapy. Phytother. Res. 2024;38:1173–1190. PubMed
Thapa A., Jett S.D., Chi E.Y. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway. ACS Chem. Neurosci. 2016;7:56–68. doi: 10.1021/acschemneuro.5b00214. PubMed DOI
Nelson K.M., Dahlin J.L., Bisson J., Graham J., Pauli G.F., Walters M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017;60:1620–1637. doi: 10.1021/acs.jmedchem.6b00975. PubMed DOI PMC
Bahadori F., Demiray M. A Realistic View on “the Essential Medicinal Chemistry of Curcumin”. ACS Med. Chem. Lett. 2017;8:893–896. doi: 10.1021/acsmedchemlett.7b00284. PubMed DOI PMC
Zhou H., Beevers C.S., Huang S. The Targets of Curcumin. Curr. Drug Targets. 2012;12:332–347. doi: 10.2174/138945011794815356. PubMed DOI PMC
Zhao S., Pi C., Ye Y., Zhao L., Wei Y. Recent Advances of Analogues of Curcumin for Treatment of Cancer. Eur. J. Med. Chem. 2019;180:524–535. doi: 10.1016/j.ejmech.2019.07.034. PubMed DOI
Costantino M., Corno C., Colombo D., Perego P. Curcumin and Related Compounds in Cancer Cells: New Avenues for Old Molecules. Front. Pharmacol. 2022;13:889816. doi: 10.3389/fphar.2022.889816. PubMed DOI PMC
Reinke A.A., Gestwicki J.E. Structure-Activity Relationships of Amyloid Beta-Aggregation Inhibitors Based on Curcumin: Influence of Linker Length and Flexibility. Chem. Biol. Drug Des. 2007;70:206–215. doi: 10.1111/j.1747-0285.2007.00557.x. PubMed DOI
Romanucci V., Giordano M., De Tommaso G., Iuliano M., Bernini R., Clemente M., Garcia-Viñuales S., Milardi D., Zarrelli A., Di Fabio G. Synthesis of New Tyrosol-Based Phosphodiester Derivatives: Effect on Amyloid β Aggregation and Metal Chelation Ability. ChemMedChem. 2021;16:1172–1183. doi: 10.1002/cmdc.202000807. PubMed DOI
Romanucci V., Giordano M., Pagano R., Agarwal C., Agarwal R., Zarrelli A., Di Fabio G. Solid-Phase Synthesis of Curcumin Mimics and Their Anticancer Activity against Human Pancreatic, Prostate, and Colorectal Cancer Cell Lines. Bioorganic Med. Chem. 2021;42:116249. doi: 10.1016/j.bmc.2021.116249. PubMed DOI
Su F., Descher H., Bui-Hoang M., Stuppner H., Skvortsova I., Rad E.B., Ascher C., Weiss A., Rao Z., Hohloch S., et al. Iron(III)-Salophene Catalyzes Redox Cycles That Induce Phospholipid Peroxidation and Deplete Cancer Cells of Ferroptosis-Protecting Cofactors. Redox Biol. 2024;75:103257. doi: 10.1016/j.redox.2024.103257. PubMed DOI PMC
Gollowitzer A., Pein H., Rao Z., Waltl L., Bereuter L., Loeser K., Meyer T., Jafari V., Witt F., Winkler R., et al. Attenuated Growth Factor Signaling during Cell Death Initiation Sensitizes Membranes towards Peroxidation. Nat. Commun. 2025;16:1774. doi: 10.1038/s41467-025-56711-2. PubMed DOI PMC
Di Gaetano S., Pirone L., Galdadas I., Traboni S., Iadonisi A., Pedone E., Saviano M., Gervasio F.L., Capasso D. Design, Synthesis, and Anticancer Activity of a Selenium-Containing Galectin-3 and Galectin-9N Inhibitor. Int. J. Mol. Sci. 2022;23:2581. doi: 10.3390/ijms23052581. PubMed DOI PMC
Mangolim C.S., Moriwaki C., Nogueira A.C., Sato F., Baesso M.L., Neto A.M., Matioli G. Curcumin-β-Cyclodextrin Inclusion Complex: Stability, Solubility, Characterisation by FT-IR, FT-Raman, X-ray Diffraction and Photoacoustic Spectroscopy, and Food Application. Food Chem. 2014;153:361–370. doi: 10.1016/j.foodchem.2013.12.067. PubMed DOI
Tønnesen H.H., Másson M., Loftsson T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. Int. J. Pharm. 2002;244:127–135. doi: 10.1016/S0378-5173(02)00323-X. PubMed DOI
Torrie G.M., Valleau J.P. Monte Carlo Free Energy Estimates Using Non-Boltzmann Sampling: Application to the Sub-Critical Lennard-Jones Fluid. Chem. Phys. Lett. 1974;28:578–581. doi: 10.1016/0009-2614(74)80109-0. DOI
Torrie G.M., Valleau J.P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977;23:187–199. doi: 10.1016/0021-9991(77)90121-8. DOI
Chan W.H., Wu H.Y., Chang W.H. Dosage Effects of Curcumin on Cell Death Types in a Human Osteoblast Cell Line. Food Chem. Toxicol. 2006;44:1362–1371. doi: 10.1016/j.fct.2006.03.001. PubMed DOI
Yang Y., Kitagaki J., Dai R.M., Yien C.T., Lorick K.L., Ludwig R.L., Pierre S.A., Jensen J.P., Davydov I.V., Oberoi P., et al. Inhibitors of Ubiquitin-Activating Enzyme (E1), a New Class of Potential Cancer Therapeutics. Cancer Res. 2007;67:9472–9481. doi: 10.1158/0008-5472.CAN-07-0568. PubMed DOI
Barghout S.H., Schimmer A.D. E1 Enzymes as Therapeutic Targets in Cancer. Pharmacol. Rev. 2021;73:1–56. doi: 10.1124/pharmrev.120.000053. PubMed DOI
Murai Y., Jo U., Murai J., Jenkins L.M., Huang S.-Y.N., Chakka S., Chen L., Cheng K., Fukuda S., Takebe N., et al. SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Res. 2021;81:3067–3078. doi: 10.1158/0008-5472.CAN-20-2694. PubMed DOI PMC
Selkoe D.J. The Molecular Pathology of Alzheimer’s Disease. Neuron. 1991;6:487–498. doi: 10.1016/0896-6273(91)90052-2. PubMed DOI
Coria F., Rubio I., Bayon C. Alzheimer’s Disease, ß-Amyloidosis, and Aging. Rev. Neurosci. 1994;5:275–292. doi: 10.1515/REVNEURO.1994.5.4.275. PubMed DOI
Hamley I.W. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem. Rev. 2012;112:5147–5192. doi: 10.1021/cr3000994. PubMed DOI
Ahmed R., Akcan M., Khondker A., Rheinstädter M.C., Bozelli J.C., Epand R.M., Huynh V., Wylie R.G., Boulton S., Huang J., et al. Atomic Resolution Map of the Soluble Amyloid Beta Assembly Toxic Surfaces. Chem. Sci. 2019;10:6072–6082. doi: 10.1039/c9sc01331h. PubMed DOI PMC
Hyung S.J., Detoma A.S., Brender J.R., Lee S., Vivekanandan S., Kochi A., Choi J.S., Ramamoorthy A., Ruotolo B.T., Lim M.H. Insights into Antiamyloidogenic Properties of the Green Tea Extract (-)-Epigallocatechin-3-Gallate toward Metal-Associated Amyloid-β Species. Proc. Natl. Acad. Sci. USA. 2013;110:3743–3748. doi: 10.1073/pnas.1220326110. PubMed DOI PMC
Lolicato F., Raudino A., Milardi D., La Rosa C. Resveratrol Interferes with the Aggregation of Membrane-Bound Human-IAPP: A Molecular Dynamics Study. Eur. J. Med. Chem. 2015;92:876–881. doi: 10.1016/j.ejmech.2015.01.047. PubMed DOI
Romanucci V., García-Viñuales S., Tempra C., Bernini R., Zarrelli A., Lolicato F., Milardi D., Di Fabio G. Modulating Aβ Aggregation by Tyrosol-Based Ligands: The Crucial Role of the Catechol Moiety. Biophys. Chem. 2020;265:106434. doi: 10.1016/j.bpc.2020.106434. PubMed DOI
Sciacca M.F.M., Romanucci V., Zarrelli A., Monaco I., Lolicato F., Spinella N., Galati C., Grasso G., D’Urso L., Romeo M., et al. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem. Neurosci. 2017;8:1767–1778. doi: 10.1021/acschemneuro.7b00110. PubMed DOI
Hamaguchi T., Ono K., Yamada M. REVIEW: Curcumin and Alzheimer’s Disease. CNS Neurosci. Ther. 2010;16:285–297. doi: 10.1111/j.1755-5949.2010.00147.x. PubMed DOI PMC
Orlando R.A., Gonzales A.M., Royer R.E., Deck L.M., Jagt D.L.V. A Chemical Analog of Curcumin as an Improved Inhibitor of Amyloid Abeta Oligomerization. PLoS ONE. 2012;7:e31869. doi: 10.1371/journal.pone.0031869. PubMed DOI PMC
Rao P.P.N., Mohamed T., Teckwani K., Tin G. Curcumin Binding to Beta Amyloid: A Computational Study. Chem. Biol. Drug Des. 2015;86:813–820. doi: 10.1111/cbdd.12552. PubMed DOI
Yanagisawa D., Taguchi H., Yamamoto A., Shirai N., Hirao K., Tooyama I. Curcuminoid Binds to Amyloid-Β1-42 Oligomer and Fibril. J. Alzheimer’s Dis. 2011;24:33–42. doi: 10.3233/JAD-2011-102100. PubMed DOI
Kochi A., Lee H.J., Vithanarachchi S.M., Padmini V., Allen M.J., Lim M.H. Inhibitory Activity of Curcumin Derivatives Towards Metal-Free and Metal-Induced Amyloid-β Aggregation. Curr. Alzheimer Res. 2015;12:415–423. doi: 10.2174/1567205012666150504150125. PubMed DOI