Engineered Peptide Coacervates Enable Efficient Intracellular Delivery of the MYC Inhibitor omoMYC
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40304302
PubMed Central
PMC12135055
DOI
10.1021/acs.molpharmaceut.5c00468
Knihovny.cz E-resources
- Keywords
- drug delivery, liquid−liquid phase separation, protein engineering,
- MeSH
- Apoptosis MeSH
- HEK293 Cells MeSH
- HeLa Cells MeSH
- Drug Delivery Systems * MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Cell-Penetrating Peptides * pharmacology MeSH
- Cell Proliferation MeSH
- Protein Engineering MeSH
- Antineoplastic Agents * pharmacology MeSH
- Proto-Oncogene Proteins c-myc * antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cell-Penetrating Peptides * MeSH
- Antineoplastic Agents * MeSH
- Proto-Oncogene Proteins c-myc * MeSH
Intracellular delivery is a bottleneck in the development of therapeutic peptides and proteins. Here, we demonstrate the efficient delivery of omoMYC, the first MYC inhibitor in clinical trials, using HBpep-SP, an engineered peptide forming liquid-liquid phase-separated coacervates. HBpep-SP coacervates facilitate efficient cellular uptake and intracellular delivery of the omoMYC peptide at concentrations lower than those required for spontaneous uptake. Strikingly, omoMYC coacervates result in reduced proliferation and apoptosis induction in the low c-MYC expressing cell lines HEK293 and SH-SY5Y cells, but not in HeLa and SK-N-BE(2) cells with high c-MYC/MYCN expression, respectively, suggesting that endogenous MYC/N levels may impact the effects of omoMYC. Importantly, our approach bypasses the need for cell penetration-enhancing chemical modifications, offering a novel strategy for the investigation of peptide drug mechanisms in therapeutic development.
Department of Cell and Molecular Biology Uppsala University 751 24 Uppsala Sweden
Department of Microbiology Tumor and Cell Biology Karolinska Institutet 171 65 Stockholm Sweden
See more in PubMed
Lee T. I., Young R. A.. Transcriptional Regulation and Its Misregulation in Disease. Cell. 2013;152(6):1237–1251. doi: 10.1016/j.cell.2013.02.014. PubMed DOI PMC
Brodsky S., Jana T., Barkai N.. Order through Disorder: The Role of Intrinsically Disordered Regions in Transcription Factor Binding Specificity. Curr. Opin. Struct. Biol. 2021;71:110–115. doi: 10.1016/j.sbi.2021.06.011. PubMed DOI
Boija A., Klein I. A., Sabari B. R., Dall’Agnese A., Coffey E. L., Zamudio A. V., Li C. H., Shrinivas K., Manteiga J. C., Hannett N. M., Abraham B. J., Afeyan L. K., Guo Y. E., Rimel J. K., Fant C. B., Schuijers J., Lee T. I., Taatjes D. J., Young R. A.. Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell. 2018;175(7):1842–1855.e16. doi: 10.1016/j.cell.2018.10.042. PubMed DOI PMC
Karadkhelkar N. M., Lin M., Eubanks L. M., Janda K. D.. Demystifying the Druggability of the MYC Family of Oncogenes. J. Am. Chem. Soc. 2023;145(6):3259–3269. doi: 10.1021/jacs.2c12732. PubMed DOI PMC
Meyer N., Penn L. Z.. Reflecting on 25 Years with MYC. Nat. Rev. Cancer. 2008;8(12):976–990. doi: 10.1038/nrc2231. PubMed DOI
Ruiz-Pérez M. V., Henley A. B., Arsenian-Henriksson M.. The MYCN Protein in Health and Disease. Genes. 2017;8(4):113. doi: 10.3390/genes8040113. PubMed DOI PMC
Vita M., Henriksson M.. The Myc Oncoprotein as a Therapeutic Target for Human Cancer. Semin. Cancer Biol. 2006;16(4):318–330. doi: 10.1016/j.semcancer.2006.07.015. PubMed DOI
Nair S. K., Burley S. K.. X-Ray Structures of Myc-Max and Mad-Max Recognizing DNA. Cell. 2003;112(2):193–205. doi: 10.1016/S0092-8674(02)01284-9. PubMed DOI
Blackwood E. M., Eisenman R. N.. Max: A Helix-Loop-Helix Zipper Protein That Forms a Sequence-Specific DNA-Binding Complex with Myc. Science. 1991;251(4998):1211–1217. doi: 10.1126/science.2006410. PubMed DOI
Farina A., Faiola F., Martinez E.. Reconstitution of an E Box-Binding Myc:Max Complex with Recombinant Full-Length Proteins Expressed in Escherichia coli . Protein Expression Purif. 2004;34(2):215–222. doi: 10.1016/j.pep.2003.11.021. PubMed DOI PMC
Soucek L., Helmer-Citterich M., Sacco A., Jucker R., Cesareni G., Nasi S.. Design and Properties of a Myc Derivative That Efficiently Homodimerizes. Oncogene. 1998;17(19):2463–2472. doi: 10.1038/sj.onc.1202199. PubMed DOI
Garralda E., Beaulieu M.-E., Moreno V., Casacuberta-Serra S., Martínez-Martín S., Foradada L., Alonso G., Massó-Vallés D., López-Estévez S., Jauset T., Corral De La Fuente E., Doger B., Hernández T., Perez-Lopez R., Arqués O., Castillo Cano V., Morales J., Whitfield J. R., Niewel M., Soucek L., Calvo E.. MYC Targeting by OMO-103 in Solid Tumors: A Phase 1 Trial. Nat. Med. 2024;30(3):762–771. doi: 10.1038/s41591-024-02805-1. PubMed DOI PMC
Atibalentja D. F., Deutzmann A., Felsher D. W.. A Big Step for MYC-Targeted Therapies. Trends Cancer. 2024;10(5):383–385. doi: 10.1016/j.trecan.2024.03.009. PubMed DOI PMC
Beaulieu M.-E., Jauset T., Massó-Vallés D., Martínez-Martín S., Rahl P., Maltais L., Zacarias-Fluck M. F., Casacuberta-Serra S., Serrano Del Pozo E., Fiore C., Foradada L., Cano V. C., Sánchez-Hervás M., Guenther M., Romero Sanz E., Oteo M., Tremblay C., Martín G., Letourneau D., Montagne M., Morcillo Alonso M. Á., Whitfield J. R., Lavigne P., Soucek L.. Intrinsic Cell-Penetrating Activity Propels Omomyc from Proof of Concept to Viable Anti-MYC Therapy. Sci. Transl. Med. 2019;11(484):eaar5012. doi: 10.1126/scitranslmed.aar5012. PubMed DOI PMC
Ellenbroek B. D., Kahler J. P., Arella D., Lin C., Jespers W., Züger E. A.-K., Drukker M., Pomplun S. J.. Development of DuoMYC: A Synthetic Cell Penetrant Miniprotein That Efficiently Inhibits the Oncogenic Transcription Factor MYC. Angew. Chem., Int. Ed. 2025;64:e202416082. doi: 10.1002/anie.202416082. PubMed DOI PMC
Wang E., Sorolla A., Cunningham P. T., Bogdawa H. M., Beck S., Golden E., Dewhurst R. E., Florez L., Cruickshank M. N., Hoffmann K., Hopkins R. M., Kim J., Woo A. J., Watt P. M., Blancafort P.. Tumor Penetrating Peptides Inhibiting MYC as a Potent Targeted Therapeutic Strategy for Triple-Negative Breast Cancers. Oncogene. 2019;38(1):140–150. doi: 10.1038/s41388-018-0421-y. PubMed DOI PMC
Lim J., Kumar A., Low K., Verma C. S., Mu Y., Miserez A., Pervushin K.. Liquid–Liquid Phase Separation of Short Histidine- and Tyrosine-Rich Peptides: Sequence Specificity and Molecular Topology. J. Phys. Chem. B. 2021;125(25):6776–6790. doi: 10.1021/acs.jpcb.0c11476. PubMed DOI
Gabryelczyk B., Cai H., Shi X., Sun Y., Swinkels P. J. M., Salentinig S., Pervushin K., Miserez A.. Hydrogen Bond Guidance and Aromatic Stacking Drive Liquid-Liquid Phase Separation of Intrinsically Disordered Histidine-Rich Peptides. Nat. Commun. 2019;10(1):5465. doi: 10.1038/s41467-019-13469-8. PubMed DOI PMC
Shebanova A., Perrin Q. M., Zhu K., Gudlur S., Chen Z., Sun Y., Huang C., Lim Z. W., Mondarte E. A., Sun R., Lim S., Yu J., Miao Y., Parikh A. N., Ludwig A., Miserez A.. Cellular Uptake of Phase-Separating Peptide Coacervates. Adv. Sci. 2024;11:2402652. doi: 10.1002/advs.202402652. PubMed DOI PMC
Sun Y., Lau S. Y., Lim Z. W., Chang S. C., Ghadessy F., Partridge A., Miserez A.. Phase-Separating Peptides for Direct Cytosolic Delivery and Redox-Activated Release of Macromolecular Therapeutics. Nat. Chem. 2022;14(3):274–283. doi: 10.1038/s41557-021-00854-4. PubMed DOI
Sun Y., Wu X., Li J., Radiom M., Mezzenga R., Verma C. S., Yu J., Miserez A.. Phase-Separating Peptide Coacervates with Programmable Material Properties for Universal Intracellular Delivery of Macromolecules. Nat. Commun. 2024;15(1):10094. doi: 10.1038/s41467-024-54463-z. PubMed DOI PMC
Sun Y., Xu X., Chen L., Chew W. L., Ping Y., Miserez A.. Redox-Responsive Phase-Separating Peptide as a Universal Delivery Vehicle for CRISPR/Cas9 Genome Editing Machinery. ACS Nano. 2023;17(17):16597–16606. doi: 10.1021/acsnano.3c02669. PubMed DOI
Tang H., Su Z.-D., Wei H.-H., Chen W., Lin H.. Prediction of Cell-Penetrating Peptides with Feature Selection Techniques. Biochem. Biophys. Res. Commun. 2016;477(1):150–154. doi: 10.1016/j.bbrc.2016.06.035. PubMed DOI
Liu H.-S., Jan M.-S., Chou C.-K., Chen P.-H., Ke N.-J.. Is Green Fluorescent Protein Toxic to the Living Cells? Biochem. Biophys. Res. Commun. 1999;260(3):712–717. doi: 10.1006/bbrc.1999.0954. PubMed DOI
Demma M. J., Mapelli C., Sun A., Bodea S., Ruprecht B., Javaid S., Wiswell D., Muise E., Chen S., Zelina J., Orvieto F., Santoprete A., Altezza S., Tucci F., Escandon E., Hall B., Ray K., Walji A., O’Neil J.. Omomyc Reveals New Mechanisms To Inhibit the MYC Oncogene. Mol. Cell. Biol. 2019;39(22):e00248-19. doi: 10.1128/MCB.00248-19. PubMed DOI PMC
Kumar P., Nagarajan A., Uchil P. D.. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor Protoc. 2018;2018(6):pdb.prot095497. doi: 10.1101/pdb.prot095497. PubMed DOI
Shen S., Shao Y., Li C.. Different Types of Cell Death and Their Shift in Shaping Disease. Cell Death Discovery. 2023;9(1):284. doi: 10.1038/s41420-023-01581-0. PubMed DOI PMC
Rogakou E. P., Nieves-Neira W., Boon C., Pommier Y., Bonner W. M.. Initiation of DNA Fragmentation during Apoptosis Induces Phosphorylation of H2AX Histone at Serine 139. J. Biol. Chem. 2000;275(13):9390–9395. doi: 10.1074/jbc.275.13.9390. PubMed DOI
Purhonen J., Banerjee R., Wanne V., Sipari N., Mörgelin M., Fellman V., Kallijärvi J.. Mitochondrial Complex III Deficiency Drives C-MYC Overexpression and Illicit Cell Cycle Entry Leading to Senescence and Segmental Progeria. Nat. Commun. 2023;14(1):2356. doi: 10.1038/s41467-023-38027-1. PubMed DOI PMC
Annibali D., Whitfield J. R., Favuzzi E., Jauset T., Serrano E., Cuartas I., Redondo-Campos S., Folch G., Gonzàlez-Juncà A., Sodir N. M., Massó-Vallés D., Beaulieu M.-E., Swigart L. B., Mc Gee M. M., Somma M. P., Nasi S., Seoane J., Evan G. I., Soucek L.. Myc Inhibition Is Effective against Glioma and Reveals a Role for Myc in Proficient Mitosis. Nat. Commun. 2014;5(1):4632. doi: 10.1038/ncomms5632. PubMed DOI PMC
Soucek L., Jucker R., Panacchia L., Ricordy R., Tatò F., Nasi S.. Omomyc, a Potential Myc Dominant Negative, Enhances Myc-Induced Apoptosis. Cancer Res. 2002;62(12):3507–3510. PubMed
Kubota Y., Kim S. H., Iguchi-Ariga S. M. M., Ariga H.. Transrepression of the N-Myc Expression by c-Myc Protein. Biochem. Biophys. Res. Commun. 1989;162(3):991–997. doi: 10.1016/0006-291X(89)90771-7. PubMed DOI
Savino M., Annibali D., Carucci N., Favuzzi E., Cole M. D., Evan G. I., Soucek L., Nasi S.. The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy. PLoS One. 2011;6(7):e22284. doi: 10.1371/journal.pone.0022284. PubMed DOI PMC
Groelly F. J., Fawkes M., Dagg R. A., Blackford A. N., Tarsounas M.. Targeting DNA Damage Response Pathways in Cancer. Nat. Rev. Cancer. 2023;23(2):78–94. doi: 10.1038/s41568-022-00535-5. PubMed DOI
Abuetabh Y., Wu H. H., Chai C., Al Yousef H., Persad S., Sergi C. M., Leng R.. DNA Damage Response Revisited: The P53 Family and Its Regulators Provide Endless Cancer Therapy Opportunities. Exp. Mol. Med. 2022;54(10):1658–1669. doi: 10.1038/s12276-022-00863-4. PubMed DOI PMC
Fulda S.. Apoptosis Pathways and Neuroblastoma Therapy. Curr. Pharm. Des. 2009;15(4):430–435. doi: 10.2174/138161209787315846. PubMed DOI
Valter K., Zhivotovsky B., Gogvadze V.. Cell Death-Based Treatment of Neuroblastoma. Cell Death Dis. 2018;9(2):113. doi: 10.1038/s41419-017-0060-1. PubMed DOI PMC
Vernooij L., Kamili A., Ober K., Van Arkel J., Lankhorst L., Vermeulen E., Al-Khakany H., Tax G., Van Den Boogaard M. L., Fletcher J. I., Eising S., Molenaar J. J., Dolman M. E. M.. Preclinical Assessment of Combined BCL-2 and MCL-1 Inhibition in High-Risk Neuroblastoma. EJC Paediatr. Oncol. 2024;3:100168. doi: 10.1016/j.ejcped.2024.100168. DOI
Bierbrauer A., Jacob M., Vogler M., Fulda S.. A Direct Comparison of Selective BH3-Mimetics Reveals BCL-XL, BCL-2 and MCL-1 as Promising Therapeutic Targets in Neuroblastoma. Br. J. Cancer. 2020;122(10):1544–1551. doi: 10.1038/s41416-020-0795-9. PubMed DOI PMC
Fitzgerald M.-C., O’Halloran P. J., Connolly N. M. C., Murphy B. M.. Targeting the Apoptosis Pathway to Treat Tumours of the Paediatric Nervous System. Cell Death Dis. 2022;13(5):460. doi: 10.1038/s41419-022-04900-y. PubMed DOI PMC
Walz S., Lorenzin F., Morton J., Wiese K. E., Von Eyss B., Herold S., Rycak L., Dumay-Odelot H., Karim S., Bartkuhn M., Roels F., Wüstefeld T., Fischer M., Teichmann M., Zender L., Wei C.-L., Sansom O., Wolf E., Eilers M.. Activation and Repression by Oncogenic MYC Shape Tumour-Specific Gene Expression Profiles. Nature. 2014;511(7510):483–487. doi: 10.1038/nature13473. PubMed DOI PMC