Transcriptome-wide Mendelian randomisation exploring dynamic CD4+ T cell gene expression in colorectal cancer development
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
HHSN268201200008C
NHLBI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
Wellcome Trust - United Kingdom
HHSN268201200008I
NHLBI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
PubMed
40321251
PubMed Central
PMC12047913
DOI
10.1101/2025.04.15.25325863
PII: 2025.04.15.25325863
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
BACKGROUND: Recent research has identified a potential protective effect of higher numbers of circulating lymphocytes on colorectal cancer (CRC) development. However, the importance of different lymphocyte subtypes and activation states in CRC development and the biological pathways driving this relationship remain poorly understood and warrant further investigation. Specifically, CD4+ T cells - a highly dynamic lymphocyte subtype - undergo remodelling upon activation to induce the expression of genes critical for their effector function. Previous studies investigating their role in CRC risk have used bulk tissue, limiting our current understanding of the role of these cells to static, non-dynamic relationships only. METHODS: Here, we combined two genetic epidemiological methods - Mendelian randomisation (MR) and genetic colocalisation - to evaluate evidence for causal relationships of gene expression on CRC risk across multiple CD4+ T cell subtypes and activation stage. Genetic proxies were obtained from single-cell transcriptomic data, allowing us to investigate the causal effect of expression of 1,805 genes across five CD4+ T cell activation states on CRC risk (78,473 cases; 107,143 controls). We repeated analyses stratified by CRC anatomical subsites and sex, and performed a sensitivity analysis to evaluate whether the observed effect estimates were likely to be CD4+ T cell-specific. RESULTS: We identified six genes with evidence (FDR-P<0.05 in MR analyses and H4>0.8 in genetic colocalisation analyses) for a causal role of CD4+ T cell expression in CRC development - FADS2, FHL3, HLA-DRB1, HLA-DRB5, RPL28, and TMEM258. We observed differences in causal estimates of gene expression on CRC risk across different CD4+ T cell subtypes and activation timepoints, as well as CRC anatomical subsites and sex. However, our sensitivity analysis revealed that the genetic proxies used to instrument gene expression in CD4+ T cells also act as eQTLs in other tissues, highlighting the challenges of using genetic proxies to instrument tissue-specific expression changes. CONCLUSIONS: Our study demonstrates the importance of capturing the dynamic nature of CD4+ T cells in understanding disease risk, and prioritises genes for further investigation in cancer prevention research.
Center for Cancer Research Medical University of Vienna Vienna Austria
Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
Department of Epidemiology and Biostatistics School of Public Health Imperial College London UK
Department of Epidemiology Harvard T H Chan School of Public Health Boston Massachusetts USA
Department of Epidemiology University of Washington Seattle Washington USA
Department of Laboratory Medicine and Pathology Mayo Clinic Arizona Scottsdale AZ USA
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Oncologic Pathology Dana Farber Cancer Institute Boston Massachusetts USA
Division of Medical Oncology and Hematology Princess Margaret Cancer Centre Toronto Canada
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
MRC Integrative Epidemiology Unit University of Bristol Bristol UK
Nutrition and Metabolism Branch International Agency for Research on Cancer WHO Lyon France
Population Health Sciences Bristol Medical School University of Bristol Bristol UK
Public Health Sciences Division Fred Hutchinson Cancer Center Seattle Washington USA
School of Cellular and Molecular Medicine University of Bristol Bristol UK
Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
See more in PubMed
World Health Organization. Colorectal cancer [Internet]. 2023. [cited 2023 Oct 18]. Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
World Cancer Research Fund, American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Colorectal Cancer: a Global Perspective. Continuous Update Project Expert Report 2018 [Internet]. 2018. [cited 2024 Oct 3]. Available from: dietandcancerreport.org
Wu J, Ge X, Zhu W, Zhi Q, Xu M, Duan W, et al. Values of applying white blood cell counts in the prognostic evaluation of resectable colorectal cancer. Mol Med Rep. 2019. Jan 10; PubMed
Prizment AE, Vierkant RA, Smyrk TC, Tillmans LS, Lee JJ, Sriramarao P, et al. Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women’s Health Study. Modern Pathology. 2016. May;29(5):516–27. PubMed PMC
Rosman Y, Hornik-Lurie T, Meir-Shafrir K, Lachover-Roth I, Cohen-Engler A, Munitz A, et al. Changes in peripheral blood eosinophils may predict colorectal cancer – A retrospective study. World Allergy Organization Journal. 2022. Oct;15(10):100696. PubMed PMC
Liu Q, Luo D, Cai S, Li Q, Li X. Circulating basophil count as a prognostic marker of tumor aggressiveness and survival outcomes in colorectal cancer. Clin Transl Med. 2020. Jan 10;9(1). PubMed PMC
Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C. The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Sci Rep. 2020. Feb 25;10(1):3360. PubMed PMC
Nicholson LB. The immune system. Essays Biochem. 2016. Oct 31;60(3):275–301. PubMed PMC
Constantinescu AE, Bull CJ, Jones N, Mitchell R, Burrows K, Dimou N, et al. Circulating white blood cell traits and colorectal cancer risk: A Mendelian randomisation study. Int J Cancer. 2023; PubMed PMC
Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 2021. Feb 27;28(1–2):5–17. PubMed PMC
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018. Oct 1;32(19–20):1267–84. PubMed PMC
Soskic B, Cano-Gamez E, Smyth DJ, Ambridge K, Ke Z, Matte JC, et al. Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nat Genet. 2022. Jun 1;54(6):817–26. PubMed PMC
Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4 T Cell Populations. Annu Rev Immunol. 2010. Mar 1;28(1):445–89. PubMed PMC
Davey Smith G, Ebrahim S. ‘Mendelian randomisation’: can genetic epidemiology contribute to understanding environmental determinants of disease?*. Int J Epidemiol. 2003. Feb;32(1):1–22. PubMed
Fernandez-Rozadilla C, Timofeeva M, Chen Z, Law P, Thomas M, Schmit S, et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat Genet. 2023. Jan 20;55(1):89–99. PubMed PMC
Huyghe JR, Harrison TA, Bien SA, Hampel H, Figueiredo JC, Schmit SL, et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut. 2021. Jul;70(7):1325–34. PubMed PMC
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019. Jan 3;51(1):76–87. PubMed PMC
Lawlor DA. Commentary: Two-sample Mendelian randomisation: opportunities and challenges. Int J Epidemiol. 2016. Jun;45(3):908–15. PubMed PMC
Sanderson E, Glymour MM, Holmes M V., Kang H, Morrison J, Munafò MR, et al. Mendelian randomisation. Nature Reviews Methods Primers. 2022. Feb 10;2(1):6. PubMed PMC
Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomisation studies. Int J Epidemiol. 2011. Jun 1;40(3):755–64. PubMed
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017. Nov 17;13(11):e1007081. PubMed PMC
Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomisation studies. Hum Mol Genet. 2018. Aug 1;27(R2):R195–208. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple. Vol. 57, Source: Journal of the Royal Statistical Society. Series B (Methodological). 1995.
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomisation. JAMA. 2021. Oct 26;326(16):1614. PubMed
Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021. Oct 26;n2233. PubMed PMC
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014. May 15;10(5):e1004383. PubMed PMC
Rasooly D, Peloso GM, Giambartolomei C. Bayesian Genetic Colocalisation Test of Two Traits Using coloc. Curr Protoc. 2022. Dec 14;2(12). PubMed
Robinson JW, Hemani G, Babaei MS, Huang Y, Baird DA, Tsai EA, et al. An efficient and robust tool for colocalisation: Pair-wise Conditional and Colocalisation (PWCoCo). bioRxiv [Internet]. 2022. Jan 1;2022.08.08.503158. Available from: http://biorxiv.org/content/early/2022/08/08/2022.08.08.503158.abstract
Wallace Chris. Prior explorer for coloc [Internet]. [cited 2024 Dec 12]. Available from: https://chr1swallace.shinyapps.io/coloc-priors/
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013. Jun 29;45(6):580–5. PubMed PMC
Graham DB, Lefkovith A, Deelen P, de Klein N, Varma M, Boroughs A, et al. TMEM258 Is a Component of the Oligosaccharyltransferase Complex Controlling ER Stress and Intestinal Inflammation. Cell Rep. 2016. Dec;17(11):2955–65. PubMed PMC
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol. 2020. Feb 11;10. PubMed PMC
Park HG, Park WJ, Kothapalli KSD, Brenna JT. The fatty acid desaturase 2 ( FADS2 ) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. The FASEB Journal. 2015. Sep;29(9):3911–9. PubMed PMC
Aglago EK, Huybrechts I, Murphy N, Casagrande C, Nicolas G, Pischon T, et al. Consumption of Fish and Long-chain n-3 Polyunsaturated Fatty Acids Is Associated With Reduced Risk of Colorectal Cancer in a Large European Cohort. Clinical Gastroenterology and Hepatology. 2020. Mar;18(3):654–666.e6. PubMed
Kim M, Park K. Dietary Fat Intake and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients. 2018. Dec 12;10(12):1963. PubMed PMC
Wang J, Zhang Y, Zhao L. Omega-3 PUFA intake and the risk of digestive system cancers. Medicine. 2020. May;99(19):e20119. PubMed PMC
Bull C, Hazelwood E, Bell JA, Tan V, Constantinescu AE, Borges C, et al. Identifying metabolic features of colorectal cancer liability using Mendelian randomisation. Elife. 2023. Dec 21;12. PubMed PMC
Haycock PC, Borges MC, Burrows K, Lemaitre RN, Burgess S, Khankari NK, et al. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine. 2023. May;91:104510. PubMed PMC
Phan LM, Yeung SCJ, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014. Mar;11(1):1–19. PubMed PMC
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4+ T Cells in Inflammatory Disease. Front Immunol. 2018. Mar 15;9. PubMed PMC
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009. Jan 9;54(1):15–39. PubMed
Houtman M, Hesselberg E, Rönnblom L, Klareskog L, Malmström V, Padyukov L. Haplotype-Specific Expression Analysis of MHC Class II Genes in Healthy Individuals and Rheumatoid Arthritis Patients. Front Immunol. 2021. Aug 17;12. PubMed PMC
Dunne MR, Phelan JJ, Michielsen AJ, Maguire AA, Dunne C, Martin P, et al. Characterising the prognostic potential of HLA-DR during colorectal cancer development. Cancer Immunology, Immunotherapy. 2020. Aug 18;69(8):1577–88. PubMed PMC
Barnaba V. T Cell Memory in Infection, Cancer, and Autoimmunity. Front Immunol. 2022. Jan 3;12. PubMed PMC
Labriet A, Lévesque É, Cecchin E, De Mattia E, Villeneuve L, Rouleau M, et al. Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients. Sci Rep. 2019. Sep 10;9(1):13008. PubMed PMC
Coghill ID, Brown S, Cottle DL, McGrath MJ, Robinson PA, Nandurkar HH, et al. FHL3 Is an Actin-binding Protein That Regulates α-Actinin-mediated Actin Bundling. Journal of Biological Chemistry. 2003. Jun;278(26):24139–52. PubMed
Huang Z, Yu C, Yu L, Shu H, Zhu X. The Roles of FHL3 in Cancer. Front Oncol. 2022. May 24;12. PubMed PMC
Cao G, Li P, He X, Jin M, Li M, Chen S, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021. Jun 4;11. PubMed PMC
Li P, Cao G, Zhang Y, Shi J, Cai K, Zhen L, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging. 2020. Jan 13;12(1):53–69. PubMed PMC
Ye SB, Cheng YK, Li PS, Zhang L, Zhang LH, Huang Y, et al. High-throughput proteomics profiling-derived signature associated with chemotherapy response and survival for stage II/III colorectal cancer. NPJ Precis Oncol. 2023. May 31;7(1):50. PubMed PMC
Yuan Y, Bao J, Chen Z, Villanueva AD, Wen W, Wang F, et al. Multi-omics analysis to identify susceptibility genes for colorectal cancer. Hum Mol Genet. 2021. Apr 27;30(5):321–30. PubMed PMC
Andersson-Rolf A, Zilbauer M, Koo BK, Clevers H. Stem Cells in Repair of Gastrointestinal Epithelia. Physiology. 2017. Jul;32(4):278–89. PubMed PMC
Blomhoff A, Olsson M, Johansson S, Akselsen HE, Pociot F, Nerup J, et al. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun. 2006. Mar 1;7(2):130–40. PubMed
Davey Smith G, Hemani G. Mendelian randomisation: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014. Sep 15;23(R1):R89–98. PubMed PMC
Butler-Laporte G, Lu T, Morris S, Zhang W, Band G, Hamilton F, et al. An accurate genetic colocalisation method for the HLA locus. 2024.
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2023. [cited 2025 Jan 17]. Available from: https://www.R-project.org/
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018. May 30;7. PubMed PMC
Richardson N, Cook I, Crane N, Dunnington D, Françoise R, Keane J, et al. arrow: Integration to “Apache.” https://CRAN.R-project.org/package=arrow 2024.
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009. Aug 23;4(8):1184–91. PubMed PMC
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005. Aug 15;21(16):3439–40. PubMed
Barrett T, Dowle M, Srinivasan A, Gorecki J, Chirico M, Hocking T. data.table: Extension of ‘data.fram’. https://CRAN.R-project.org/package=data.table; 2024.
Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr; 2023.
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol. 2013. Aug 8;9(8):e1003118. PubMed PMC
Hemani G. gwasvcf: Tools for Dealing with GWAS Summary Data in VCF Format. https://github.com/mrcieu/gwasvcf; 2024.
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009. Jul 15;25(14):1841–2. PubMed PMC
Wickham H. stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr; 2023.
Wickham H, Vaughan D, Girlich M. tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr; 2024.
Carey V. gwascat: representing and modeling data in the EMBL-EBI GWAS catalog. 2024.
Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2.” https://CRAN.R-project.org/package=ggrepel; 2024.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; New York; 2016.
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015. Dec 25;4(1):7. PubMed PMC