Polymer Crystallization: Universal Macroscopic Description via the Autocatalytic Hoffman-Lauritzen Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40321513
PubMed Central
PMC12044480
DOI
10.1021/acsomega.5c00067
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
For the description of the crystallization in polymers, the exponential autocatalytic N th-order model, paired with the Hoffman-Lauritzen nucleation-growth theory (the conjunction denoted as the MCHL model), was introduced as an alternative to the classical Avrami concept. It was demonstrated, employing theoretical simulations, that the Avrami-based kinetics exhibits a strictly defined interval of asymmetries for the derivative kinetic data (conformable to the differential scanning calorimetry crystallization peaks), often incompatible with the experimental observations. On the other hand, the MCHL model is highly flexible, reproducing and largely extending the range of the Avrami asymmetries, thus effectively covering all possible single-process manifestations of the polymer crystallization mechanisms. The MCHL model was further proven to comply with the t 0.5-based evaluation of the Hoffman-Lauritzen nucleation constant, reducing the number of variables in the nonlinear optimization-based enumeration of the model's parameters. A unique relationship between the Avrami and MCHL kinetic was found.
Zobrazit více v PubMed
Zhang M. C.; Guo B. H.; Xu J. A review on polymer crystallization theories. Crystals 2017, 7, 4.10.3390/cryst7010004. DOI
Keller A.; Goldbeck-Wood G.; Hikosaka M. Polymer crystallization: survey and new trends with wider implications for phase transformations. Faraday Discuss 1993, 95, 109–128. 10.1039/fd9939500109. DOI
Sangroniz L.; Cavallo D.; Müller A. J. Self-nucleation effects on polymer crystallization. Macromolecules 2020, 53 (12), 4581–4604. 10.1021/acs.macromol.0c00223. DOI
Raimo M. Impact of thermal properties on crystalline structure, polymorphism and morphology of polymer matrices in composites. Materials 2021, 14, 2136.10.3390/ma14092136. PubMed DOI PMC
Gao P.; Masato D. The Effects of Nucleating Agents and Processing on the Crystallization and Mechanical Properties of Polylactic Acid: A Review. Micromachines 2024, 15, 776.10.3390/mi15060776. PubMed DOI PMC
Wunderlich B.; Davidson T. Extended-chain crystals. I. General crystallization conditions and review of pressure crystallization of polyethylene. J. Polym. Sci. A-2: Polym. Phys. 1969, 7, 2043–2050. 10.1002/pol.1969.160071206. DOI
Johnson W. A. Reaction kinetics in process of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–458.
Avrami M. Kinetics of phase change. I General theory. J. Chem. Phys. 1939, 7, 1103–1112. 10.1063/1.1750380. DOI
Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. 10.1063/1.1750631. DOI
Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177–184. 10.1063/1.1750872. DOI
Kolmogorov A. N. On the statistical theory of the crystallization of metals. Bull. Acad. Sci. URSS (Cl. Sci. Math. Nat.) 1937, 1, 335–359.
Hoffman J. D.; Davis G. T.; Lauritzen J. I. Jr.. The rate of crystallization of linear polymers with chain folding Treatise on Solid State Chemistry, (Crystalline and Noncrystalline Solids) Hannay N. B.Ed.Springer; Boston, MA: 19763497–61410.1007/978-1-4684-2664-9_7 DOI
Huang T.; Zhou C. Surface Diffusion-Controlled Jonhson–Mehl–Avrami–Kolmogorov Model for Hydrogenation of Mg-based Alloys. J. Phys. Chem. C 2023, 127, 13900–13910. 10.1021/acs.jpcc.3c02650. DOI
Pang Y.; Sun D.; Gu Q.; Chou K. C.; Wang X.; Li Q. Comprehensive determination of kinetic parameters in solid-state phase transitions: an extended Jonhson–Mehl–Avrami–Kolomogorov model with analytical solutions. Cryst. Growth Des. 2016, 16, 2404–2415. 10.1021/acs.cgd.6b00187. DOI
Frank F. C.; Tosi M. On the theory of polymer crystallization. Proc. R. Soc. London, Ser. A 1961, 263, 323–339. 10.1098/rspa.1961.0163. DOI
Lauritzen J. I. Jr.; Passaglia E. Kinetics of crystallization in multicomponent systems. II. Chain-folded polymer crystals. J. Res. Natl. Bur. Stand. Sec. A 1967, 71A (4), 261–275. 10.6028/jres.071A.033. PubMed DOI PMC
Hoffman J. D.; Miller R. L. Surface nucleation theory for chain-folded systems with lattice strain: curved edges. Macromolecules 1989, 22, 3038–3054. 10.1021/ma00197a027. DOI
Point J. J.; Villers D. Nucleation-controlled growth and normal growth: a unified view. J. Cryst. Growth 1991, 114, 228–238. 10.1016/0022-0248(91)90696-3. DOI
Hoffman J. D.; Miller R. L. Response to criticism of nucleation theory as applied to crystallization of lamellar polymers. Macromolecules 1989, 22, 3502–3505. 10.1021/ma00198a055. DOI
Hoffman J. D. Transition from extended-chain to once-folded behaviour in pure n-paraffins crystallized from the melt. Polymer 1991, 32, 2828–2841. 10.1016/0032-3861(91)90116-Z. DOI
Hoffman J. D. The relationship of C∞ to the lateral surface free energy σ: estimation of C∞ for the melt from rate of crystallization data. Polymer 1992, 33, 2643–2644. 10.1016/0032-3861(92)91149-V. DOI
Sadler D. M.; Gilmer G. H. A model for chain folding in polymer crystals: rough growth faces are consistent with the observed growth rates. Polymer 1984, 25, 1446–1452. 10.1016/0032-3861(84)90108-3. DOI
Sadler D. M. Roughness of growth faces of polymer crystals: Evidence from morphology and implications for growth mechanisms and types of folding. Polymer 1983, 24, 1401–1409. 10.1016/0032-3861(83)90220-3. DOI
Sadler D. M.; Gilmer G. H. Rate-theory model of polymer crystallization. Phys. Rev. Lett. 1986, 56, 2708.10.1103/PhysRevLett.56.2708. PubMed DOI
Hikosaka M. Unified theory of nucleation of folded-chain crystals (FCCs) and extended-chain crystals (ECCs) of linear-chain polymers: 2. Origin of FCC and ECC. Polymer 1990, 31, 458–468. 10.1016/0032-3861(90)90385-C. DOI
Hikosaka M. Unified theory of nucleation of folded-chain crystals and extended-chain crystals of linear-chain polymers. Polymer 1987, 28, 1257–1264. 10.1016/0032-3861(87)90434-4. DOI
Hikosaka M.; Amano K.; Rastogi S.; Keller A.. Crystallization of Polymers; Kluwer Academic Publishers: Dordrecht, Netherlands, 1993; p 331.
Hikosaka M.; Watanabe K.; Okada K.; Yamazaki S.. Topological mechanism of polymer nucleation and growth–the role of chain sliding diffusion and entanglement. In Interphases and mesophases in polymer crystallization III, Allegra G., Ed.; Springer, 2005.
Wunderlich B.; Mehta A. Macromolecular nucleation. J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 255–263. 10.1002/pol.1974.180120203. DOI
Mehta A.; Wunderlich B. A study of molecular fractionation during the crystallization of polymers. Colloid Polym. Sci. 1975, 253, 193–205. 10.1007/BF01470229. DOI
Cheng S. Z.; Noid D. W.; Wunderlich B. Molecular segregation and nucleation of poly (ethylene oxide) crystallized from the melt. IV. Computer modeling. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 1149–1160. 10.1002/polb.1989.090270514. DOI
Hu W.; Frenkel D.; Mathot V. B. Intramolecular nucleation model for polymer crystallization. Macromolecules 2003, 36, 8178–8183. 10.1021/ma0344285. DOI
Hu W.; Cai T. Regime transitions of polymer crystal growth rates: molecular simulations and interpretation beyond Lauritzen-Hoffman model. Macromolecules 2008, 41, 2049–2061. 10.1021/ma702636g. DOI
Kundagrami A.; Muthukumar M. Continuum theory of polymer crystallization. J. Chem. Phys. 2007, 126 (14), 144901.10.1063/1.2713380. PubMed DOI
Leung W. M.; John Manley R. S.; Panaras A. R. Isothermal growth of low molecular weight polyethylene single crystals from solution. 3. Macromolecules 1985, 18, 760–771. 10.1021/ma00146a031. DOI
Cheng S. Z.; Chen J.; Heberer D. P. Extended chain crystal growth of low molecular mass poly (ethylene oxide) and α, ω-methoxy poly (ethylene oxide) fractions near their melting temperatures. Polymer 1992, 33, 1429–1436. 10.1016/0032-3861(92)90118-G. DOI
Shirzad K.; Viney C. A critical review on applications of the Avrami equation beyond materials science. J. R. Soc., Interface 2023, 20 (203), 20230242.10.1098/rsif.2023.0242. PubMed DOI PMC
Blázquez J. S.; Romero F. J.; Conde C. F.; Conde A. A review of different models derived from classical Kolmogorov, Johnson and Mehl, and Avrami (KJMA) theory to recover physical meaning in solid-state transformations. Phys. Status Solidi B 2022, 259, 2100524.10.1002/pssb.202100524. DOI
Ozawa T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. 10.1016/0032-3861(71)90041-3. DOI
Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1144. 10.1016/0032-3861(78)90060-5. DOI
Liu T.; Mo Z.; Wang S.; Zhang H. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone. Polym. Eng. Sci. 1997, 37, 568–575. 10.1002/pen.11700. DOI
Nakamura K.; Watanabe T.; Katayama K.; Amano T. Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J. Appl. Polym. Sci. 1972, 16, 1077–1091. 10.1002/app.1972.070160503. DOI
Delogu F.; Cocco G. Kinetics of amorphization processes by mechanical alloying: a modeling approach. J. Alloys Compd. 2007, 436, 233–240. 10.1016/j.jallcom.2006.07.029. DOI
Delogu F.; Deidda C.; Mulas G.; Schiffini L.; Cocco G. A quantitative approach to mechanochemical processes. J. Mater. Sci. 2004, 39, 5121–5124. 10.1023/B:JMSC.0000039194.07422.be. DOI
Delogu F.; Takacs L. Mechanochemistry of Ti–C powder mixtures. Acta Mater. 2014, 80, 435–444. 10.1016/j.actamat.2014.08.036. DOI
Pérez-Ćardenas F. C.; Castillo L. F. D.; Vera-Graziano R. Modified Avrami expression for polymer crystallization kinetics. J. Appl. Polym. Sci. 1991, 43, 779–782. 10.1002/app.1991.070430416. DOI
Cahn J. W. The kinetics of grain boundary nucleated reactions. Acta Metall. 1956, 4, 449–459. 10.1016/0001-6160(56)90041-4. DOI
Zhang Z.; Shao Y.; Huang L.; Liu X.; Han F.; Yan P. A new hydration kinetic model based on boundary nucleation and growth mechanism with time-dependent growth rate: Application to quantitively characterize the influence of alkali on the early hydration of cement, Constr. Build. Mater. 2024, 411, 134616.10.1016/j.conbuildmat.2023.134616. DOI
Svoboda R. Johnson-Mehl-Avrami kinetics as a universal description of crystallization in glasses?. J. Eur. Ceram. Soc. 2024, 44, 4064–4082. 10.1016/j.jeurceramsoc.2023.12.096. DOI
Luciano G.; Soetaert K.; Svoboda R. Simulation and non-linear optimization of Šesták-Berggren kinetics. J. Non-Cryst. Solids 2020, 550, 120391.10.1016/j.jnoncrysol.2020.120391. DOI
Luciano G.; Svoboda R. Simulation and non-linear optimization of kinetic models for solid-state processes, Model. Simul. Mater. Sci. Eng. 2024, 32, 035014.10.1088/1361-651X/ad2788. DOI
Svoboda R.; Zmrhalová Z. O.; Galusek D.; Brandová D.; Chovanec J. Thermal decomposition of mixed calcium oxalate hydrates – kinetic deconvolution of complex heterogeneous processes. Phys. Chem. Chem. Phys. 2020, 22 (16), 8889–8901. 10.1039/C9CP06867H. PubMed DOI
Svoboda R. Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses. J. Eur. Ceram. Soc. 2024, 44, 401–407. 10.1016/j.jeurceramsoc.2023.08.050. DOI
Šesták J.Thermophysical properties of solids: their measurements and theoretical thermal analysis; Elsevier: Amsterdam, 1984.
Svoboda R. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data: Part 3. J. Therm. Anal. Calorim. 2019, 136, 1307–1314. 10.1007/s10973-018-7738-1. DOI
Svoboda R.; Maqueda L. P.; Podzemná V.; Perejon A.; Svoboda O. Influence of DSC thermal lag on evaluation of crystallization kinetics. J. Non-Cryst. Solids 2020, 528, 119738.10.1016/j.jnoncrysol.2019.119738. DOI
Svoboda R. Extended theoretical analysis of crystallisation kinetics being studied by in situ XRD. Philos. Mag. 2020, 100, 713–727. 10.1080/14786435.2019.1704901. DOI
Brandová D.; Svoboda R.; Zmrhalová Z. O.; Chovanec J.; Bulánek R.; Romanová J. Crystallization kinetics of glassy materials: the ultimate kinetic complexity?. J. Therm. Anal. Calorim. 2018, 134, 825–834. 10.1007/s10973-018-7078-1. DOI
Svoboda R.; Chovanec J.; Šlang S.; Beneš L.; Konrad P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2021, 889, 161672.10.1016/j.jallcom.2021.161672. DOI
Svoboda R. Thermal decomposition of active pharmaceutical substances and accuracy of the related kinetic predictions: The case of nifedipine. Thermochim. Acta 2024, 738, 179790.10.1016/j.tca.2024.179790. DOI
Šesták J.; Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 1971, 3, 1–12. 10.1016/0040-6031(71)85051-7. DOI
Šesták J. Šesták–Berggren equation: now questioned but formerly celebrated-what is right. J. Therm. Anal. Calorim. 2017, 127, 1117–1123. 10.1007/s10973-015-4998-x. DOI
Šimon P. Fourty years of the Šesták–Berggren equation. Thermochim. Acta 2011, 520, 156–157. 10.1016/j.tca.2011.03.030. DOI
Svoboda R.; Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J. Therm. Anal. Calorim. 2013, 111, 1045–1056. 10.1007/s10973-012-2445-9. DOI
figshare
10.6084/m9.figshare.28726550.v1