• This record comes from PubMed

Mapping the attractor landscape of Boolean networks with biobalm

. 2025 May 06 ; 41 (5) : .

Language English Country England, Great Britain Media print

Document type Journal Article

Grant support
MCB1715826 NSF CEP Register

MOTIVATION: Boolean networks are popular dynamical models of cellular processes in systems biology. Their attractors model phenotypes that arise from the interplay of key regulatory subcircuits. A succession diagram (SD) describes this interplay in a discrete analog of Waddington's epigenetic attractor landscape that allows for fast identification of attractors and attractor control strategies. Efficient computational tools for studying SDs are essential for the understanding of Boolean attractor landscapes and connecting them to their biological functions. RESULTS: We present a new approach to SD construction for asynchronously updated Boolean networks, implemented in the biologist's Boolean attractor landscape mapper, biobalm. We compare biobalm to similar tools and find a substantial performance increase in SD construction, attractor identification, and attractor control. We perform the most comprehensive comparative analysis to date of the SD structure in experimentally-validated Boolean models of cell processes and random ensembles. We find that random models (including critical Kauffman networks) have relatively small SDs, indicating simple decision structures. In contrast, nonrandom models from the literature are enriched in extremely large SDs, indicating an abundance of decision points and suggesting the presence of complex Waddington landscapes in nature. AVAILABILITY AND IMPLEMENTATION: The tool biobalm is available online at https://github.com/jcrozum/biobalm. Further data, scripts for testing, analysis, and figure generation are available online at https://github.com/jcrozum/biobalm-analysis and in the reproducibility artefact at https://doi.org/10.5281/zenodo.13854760.

See more in PubMed

Albert R, Othmer HG.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol  2003;223:1–18. PubMed PMC

Balleza E, Alvarez-Buylla ER, Chaos A  et al.  Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLOS One  2008;3:e2456. PubMed PMC

Benes N, Brim L, Pastva S et al.  Computing bottom SCCs symbolically using transition guided reduction. In: Proceedings of CAV. Cham: Springer,  2021, 505–28.

Beneš N, Brim L, Huvar O  et al.  AEON.py: Python library for attractor analysis in asynchronous Boolean networks. Bioinform  2022;38:4978–80. PubMed

Correia RB, Gates AJ, Wang X  et al.  CANA: a Python package for quantifying control and canalization in Boolean networks. Front Physiol  2018;9:1046. PubMed PMC

Derrida B, Stauffer D.  Phase transitions in two-dimensional Kauffman cellular automata. Europhys Lett  1986;2:739–45.

Fiedler B, Mochizuki A, Kurosawa G  et al.  Dynamics and control at feedback vertex sets. I: informative and determining nodes in regulatory networks. J Dyn Differ Equ  2013;25:563–604.

Folkesson E, Sakshaug BC, Hoel AD  et al.  Synergistic effects of complex drug combinations in colorectal cancer cells predicted by logical modelling. Front Syst Biol  2023;3:1112831.

Gates AJ, Brattig Correia R  et al.  The effective graph reveals redundancy, canalization, and control pathways in biochemical regulation and signaling. PNAS  2021;118:e2022598118. PubMed PMC

Gershenson C.  Introduction to random Boolean networks. In: Proceedings of ALife. Cambridge: MIT Press, ; 2004, 160–73.

Giang TV, Hiraishi K.  An improved method for finding attractors of large-scale asynchronous Boolean networks. In: Proceedings of CIBCB. New York City: IEEE, 2021, 1–9.

Kadelka C, Wheeler M, Veliz-Cuba A  et al.  Modularity of biological systems: a link between structure and function. J R Soc Interface  2023;20:20230505. PubMed PMC

Kadelka C, Butrie T-M, Hilton E  et al.  A meta-analysis of Boolean network models reveals design principles of gene regulatory networks. Sci Adv  2024;10:eadj0822. PubMed PMC

Kauffman SA.  Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol  1969;22:437–67. PubMed

Klarner H, Bockmayr A, Siebert H  et al.  Computing maximal and minimal trap spaces of Boolean networks. Nat Comput  2015;14:535–44.

Klarner H, Streck A, Siebert H  et al.  PyBoolNet: a python package for the generation, analysis and visualization of Boolean networks. Bioinformatics  2017;33:770–2. PubMed

Mendoza L, Thieffry D, Alvarez-Buylla ER  et al.  Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics  1999;15:593–606. PubMed

Meyer P, Maity P, Burkovski A  et al.  A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol  2017;13:e1005741. PubMed PMC

Montagud A, Béal J, Tobalina L  et al.  Patient-specific Boolean models of signalling networks guide personalised treatments. Elife  2022;11:e72626. PubMed PMC

Mori T, Akutsu T.  Attractor detection and enumeration algorithms for Boolean networks. Comput Struct Biotechnol J  2022;20:2512–20. PubMed PMC

Newby E, Zañudo JGT, Albert R.  Structure-based approach to identifying small sets of driver nodes in biological networks. Chaos  2022;32:063102. PubMed

Newby E, Zañudo JGT, Albert R.  Structure-based approach to identify driver nodes in ensembles of biologically inspired Boolean networks. Phys Rev Res  2023;5:033009.

Park KH, Costa FX, Rocha LM  et al.  Models of cell processes are far from the edge of chaos. PRX Life  2023;1:023009. PubMed PMC

Pastva S, Safranek D, Benes N,  et al. Repository of logically consistent real-world Boolean network models. bioRxiv, 10.1101/2023.06.12.544361, 2023, preprint: not peer reviewed. DOI

Paulevé L.  Pint: a static analyzer for transient dynamics of qualitative networks with ipython interface. In: Proceedings of CMSB. Cham: Springer,  2017, 309–16.

Rozum J, Albert R.  Leveraging network structure in nonlinear control. NPJ Syst Biol Appl  2022;8:36. PubMed PMC

Rozum JC, Albert R.  Identifying (un)controllable dynamical behavior in complex networks. PLoS Comput Biol  2018a;14:e1006630. PubMed PMC

Rozum JC, Albert R.  Self-sustaining positive feedback loops in discrete and continuous systems. J Theor Biol  2018b;459:36–44. PubMed

Rozum JC, Gómez Tejeda Zañudo J, Gan X  et al.  Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. Sci Adv  2021a;7:eabf8124. PubMed PMC

Rozum JC, Deritei D, Park KH  et al.  pystablemotifs: Python library for attractor identification and control in Boolean networks. Bioinformatics  2021b;38:1465–6. PubMed

Rozum JC, Campbell C, Newby E, et al. Boolean networks as predictive models of emergent biological behaviors. arXiv: 2310.12901 [nlin, q-bio]. 10.48550/arXiv.2310.12901, 2023, preprint: not peer reviewed. DOI

Sales-Pardo M, Guimerà R, Moreira AA  et al.  Extracting the hierarchical organization of complex systems. Proc Natl Acad Sci  2007;104:15224–9. PubMed PMC

Sánchez L, Chaouiya C.  Primary sex determination of placental mammals: a modelling study uncovers dynamical developmental constraints in the formation of sertoli and granulosa cells. BMC Syst Biol  2016;10:1–11. PubMed PMC

Steinway SN, Zañudo JGT, Ding W  et al.  Network modeling of TGF PubMed PMC

Su C, Pang J.  CABEAN 2.0: efficient and efficacious control of asynchronous Boolean networks. In: Proceedings of FM. Cham: Springer, 2021, 581–98.

Trinh V, Hiraishi K, Benhamou B. Computing attractors of large-scale asynchronous Boolean networks using minimal trap spaces. In: Proceedings of ACM-BCB. New York City: ACM, 2022a, 13:1–10.

Trinh V, Benhamou B, Hiraishi K et al.  Minimal trap spaces of logical models are maximal siphons of their Petri net encoding. In: Proceedings of CMSB. Cham: Springer, 2022b, 158–76.

Trinh VG, Akutsu T  et al.  An FVS-based approach to attractor detection in asynchronous random Boolean networks. IEEE ACM Trans Comput Biol Bioinform  2022c;19:806–18. PubMed

von Dassow G, Meir E, Munro EM  et al.  The segment polarity network is a robust developmental module. Nature  2000;406:188–92. PubMed

Waddington CH.  Canalization of development and the inheritance of acquired characters. Nature  1942;150:563–5. PubMed

Wang R-S, Saadatpour A, Albert R  et al.  Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol  2012;9:055001. PubMed

Zañudo JGT, Albert R.  An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos  2013;23:025111. PubMed

Zañudo JGT, Albert R.  Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput Biol  2015;11:e1004193. PubMed PMC

Zañudo JGT, Yang G, Albert R  et al.  Structure-based control of complex networks with nonlinear dynamics. Proc Natl Acad Sci USA  2017;114:7234–9. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...