Some Peculiarities of Using the Extended Finite Element Method in Modelling the Damage Behaviour of Fibre-Reinforced Composites

. 2025 Apr 14 ; 18 (8) : . [epub] 20250414

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40333474

The present study utilises the extended finite element method (XFEM) to model fibre-reinforced composites, with a focus on crack initiation and propagation. Silicon nitride-based ceramics were selected as a model material; they represent a broad class of short fibre ceramics and have received a lot of attention in recent decades. Some peculiarities when using the XFEM, including its selected modifications, are discussed in response to applied external stresses, mainly in the viscoelastic range. Promising approaches are recommended, which lead to a more accurate description of these materials under operating conditions, focusing on the correct calculation of the macroscopic stress ahead of the propagating crack front. The authors draw on years of experience with the material and investigate the possible improvements and modifications to the XFEM.

Zobrazit více v PubMed

Papenfuß C. Continuum Thermodynamics and Constitutive Theory. Springer; Berlin/Heidelberg, Germany: 2020.

Fedele R., Placidi L., Fabbrocino F. A review of inverse problems for generalized elastic media: Formulations, experiments, synthesis. Continuum Mech. Thermodyn. 2024;36:1413–1453. doi: 10.1007/s00161-024-01314-3. DOI

Sumi I. Mathematical and Computational Analyses of Cracking Formation. Springer; Tokyo, Japan: 2014.

Roubíček T. Nonlinear Partial Differential Equations with Applications. Birkhäuser; Basel, Switzerland: 2005.

Khoei A.R. Extended Finite Element Method: Theory and Applications. J. Wiley & Sons; Chichester, UK: 2014.

Xiao G., Wen L., Tian R. Arbitrary 3D crack propagation with Improved XFEM: Accurate and efficient crack geometries. Comput. Methods Appl. Mech. Eng. 2021;377:113659. doi: 10.1016/j.cma.2020.113659. DOI

Song J.-H.H., Areias P.M.A., Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 2006;67:868–893. doi: 10.1002/nme.1652. DOI

Wen L., Tian R. Improved XFEM: Accurate and robust dynamic crack growth simulation. Comput. Methods Appl. Mech. Eng. 2016;308:256–285. doi: 10.1016/j.cma.2016.05.013. DOI

Kozák V., Vala J. Use of cohesive approaches for modelling critical states in fibre-reinforced structural materials. Materials. 2024;17:3177. doi: 10.3390/ma17133177. PubMed DOI PMC

Ma J., Chen W., Zhang C., Lin J. Meshless simulation of anti-plane crack problems by the method of fundamental solutions using the crack Green’s function. Comput. Math. Appl. 2020;79:1543–1560. doi: 10.1016/j.camwa.2019.09.016. DOI

Zhang M., Abidin A.R.Z., Tan C.S. State-of-the-art review on meshless methods in the application of crack problems. Theor. Appl. Fract. Mech. 2024;131:104348. doi: 10.1016/j.tafmec.2024.104348. DOI

Lendauer M., Danzer R. Silicon nitride tools for the hot rolling of high-alloyed steel and superalloy wires—Crack growth and lifetime prediction. J. Eur. Ceram. Soc. 2008;28:2289–2298. doi: 10.1016/j.jeurceramsoc.2008.02.028. DOI

Lange F.F. Fracture toughness of Si3N4 as a function of the initial α-phase content. J. Am. Ceram. Soc. 1979;62:428–430. doi: 10.1111/j.1151-2916.1979.tb19096.x. DOI

Hoffmann M.J., Petzow: G. Tailored microstructures of silicon nitride ceramics. Pure Appl. Chem. 1994;66:1807–1814. doi: 10.1351/pac199466091807. DOI

Supancic P., Danzer R., Witschnig S., Polaczek E., Morrell R. A new test to determine the tensile strength of brittle balls—The notched ball test. J. Euro. Ceram. Soc. 2009;29:2447–2459. doi: 10.1016/j.jeurceramsoc.2009.02.018. DOI

Fünfschilling S.F., Fett T., Hoffmann M.J., Oberacker R., Schwind T., Wippler J., Böhlke T., Özcoban H., Schneider G.A., Becher P.F., et al. Mechanisms of toughening in silicon nitrides: The roles of crack bridging and microstructure. Acta Mater. 2011;59:3978–3989. doi: 10.1016/j.actamat.2011.03.023. DOI

Greene R.B., Fünfschilling S.F., Fett T., Hoffmann M.J., Ager J.W., Kruzic J.J. Fatigue threshold R-curves predict fatigue endurance strength for self-reinforced silicon nitride. J. Am. Ceram. Soc. 2014;97:577–583. doi: 10.1111/jace.12697. DOI

Cotterel B., Atkins A.G. A review of the J and I integrals and their implications for crack growth resistance and toughness in ductile fracture. Int. J. Fract. 1996;81:357–372. doi: 10.1007/BF00012428. DOI

Meindlhumer M., Alfreider M., Sheshi N., Hohenwarter A., Todt J., Rosenthal M., Burghammer M., Salvati E., Keckes J., Kiener D. Resolving the fundamentals of the J-integral concept by multi-method in situ nanoscale stress–strain mapping. Commun. Mater. 2025;6:35. doi: 10.1038/s43246-025-00752-z. PubMed DOI PMC

Kozák V., Chlup Z., Padělek P., Dlouhý I. Prediction of traction separation law of ceramics using iterative finite element method. Solid State Phenom. 2017;258:186–189. doi: 10.4028/www.scientific.net/SSP.258.186. DOI

Govindasamy L., Park Y.-J., Ko J.-W., Lee J.-W., Ma H.-J., Kumar K., Kim H.-N. Role of β-Si3N4 seeds in microstructure development and properties of silicon nitride ceramics: A comprehensive review. J. Korean Ceram. Soc. 2024;61:507–536. doi: 10.1007/s43207-024-00388-8. DOI

Zhang Q., Wang W., Zhang Z., Liang Y., Sun F., Wang Z., Han G., Zhang W. Enhancing fracture toughness of silicon nitride ceramics by addition of β-Si3N4 whisker and MXene. Ceram. Int. 2024;50:35695–35705. doi: 10.1016/j.ceramint.2024.06.387. DOI

Steinhauser M.O. Computational Multiscale Modelling of Fluids and Solids. Springer; Berlin/Heidelberg, Germany: 2008.

Xie J., Zhing N. Microscale and mesoscale modeling for compressive failure in unidirectional carbon fiber reinforced polymer composites with random distribution of fiber misalignments. Polym. Compos. 2024;45:5675–5693. doi: 10.1002/pc.28156. DOI

Tang Y.-Q., Yin Z.-Y., Jin Y.-F., Zhou X.-W. A novel mesoscale modelling method for steel fibre-reinforced concrete with the combined finite-discrete element method. Cem. Concr. Compos. 2024;149:105479. doi: 10.1016/j.cemconcomp.2024.105479. DOI

Belytschko T., Gracie R., Ventura G. A review of extended/generalized finite element methods for material modeling. Modell. Simul. Mater. Sci. Eng. 2009;17:043001. doi: 10.1088/0965-0393/17/4/043001. DOI

Zi G., Belytchko T. New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Meth. Eng. 2003;57:2221–2240. doi: 10.1002/nme.849. DOI

Deng H., Yan B., Zhang X., Zhu Y., Koyanagi J. New crack front enrichment for XFEM modeling. Int. J. Solids Struct. 2023;274:112280. doi: 10.1016/j.ijsolstr.2023.112280. DOI

Abdelaziz Y., Hamouine A. A survey of the extended finite element. Comput. Struct. 2008;86:1141–1151. doi: 10.1016/j.compstruc.2007.11.001. DOI

Cervera M., Barbat G.B., Chiumenti M., Wu J.Y. A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking. Arch. Comput. Methods Eng. 2022;29:1009–1083. doi: 10.1007/s11831-021-09604-8. DOI

Vellwock A.E., Libonati F. FEM for composites, biological, and bioinspired materials: A review. Materials. 2024;17:745. doi: 10.3390/ma17030745. PubMed DOI PMC

Swati R.F., Wen L.H., Elahi H., Khan A.A., Shad S. Extended finite element method (XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and delaminations in progressive damage: A review. Microsyst. Technol. 2019;25:747–763. doi: 10.1007/s00542-018-4021-0. DOI

Huang S., Fu Q., Yan L., Kasal B. Characterization of interfacial properties between fibre and polymer matrix in composite materials—A critical review. J. Mater. Res. Technol. 2021;13:1441–1484. doi: 10.1016/j.jmrt.2021.05.076. DOI

Loh J.Y.Y., Yeoh K.M., Raju K., Pham V.N.H., Tan V.B.C., Tay T.E. A review of machine learning for progressive damage modelling of fiber-reinforced composites. Appl. Compos. Mater. 2024;31:1795–1832. doi: 10.1007/s10443-024-10255-8. DOI

Melenk J.M., Babuška I. The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 1996;139:289–314. doi: 10.1016/S0045-7825(96)01087-0. DOI

Babuška I., Strouboulis T., Copps K. The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 2000;181:43–69.

Moës N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 1999;46:131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J. DOI

Fries T.-P., Belytchko T. The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 2006;68:1358–1385. doi: 10.1002/nme.1761. DOI

Simone A. Partition of unity-based discontinuous finite elements: GFEM, PUFEM, XFEM. Rev. Eur. Genie Civ. 2007;11:1045–1068. doi: 10.1080/17747120.2007.9692976. DOI

Wang Y., Javadi A.A., Fidelibus C., Liang H. Improvements for the solution of crack evolution using extended finite element method. Nat. Sci. Rep. 2024;14:26924. doi: 10.1038/s41598-024-76626-0. PubMed DOI PMC

Needleman A. Micromechanical modelling of interfacial decohesion. Ultramicroscopy. 1992;40:203–214. doi: 10.1016/0304-3991(92)90117-3. DOI

Pike M.G., Oskay C. XFEM modelling of short microfibre reinforced composites with cohesive interfaces. Finite Elem. Anal. Des. 2005;106:16–31. doi: 10.1016/j.finel.2015.07.007. DOI

Kaliske M. A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 2000;185:225–243. doi: 10.1016/S0045-7825(99)00261-3. DOI

Endo V.T., de Carvalho Pereira J.C. Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series. Mech. Time-Depend. Mater. 2017;21:199–221. doi: 10.1007/s11043-016-9326-8. DOI

Guangwu F., Long L., Xiguang G., Yingdong S. Finite element analysis of the crack deflection in fiber reinforced ceramic matrix composites with multilayer interphase using virtual crack closure technique. Appl. Compos. Mater. 2020;27:307–320. doi: 10.1007/s10443-020-09810-w. DOI

Nguyen-Thanh N., Li W., Huang J., Zhou K. Multi phase-field modeling of anisotropic crack propagation in 3D fiber-reinforced composites based on an adaptive isogeometric meshfree collocation method. Comput. Methods Appl. Mech. Eng. 2022;393:114794. doi: 10.1016/j.cma.2022.114794. DOI

Kozák V., Vala J. Crack growth modelling in cementitious composites using XFEM. Procedia Struct. Integr. 2023;43:47–52. doi: 10.1016/j.prostr.2022.12.233. DOI

Xu W.-J., Shi X., Sun Y., Feng S.-Q., Zhao Y.-L. Fracture mechanics model of biological composites reinforced by helical fibers. Compos. Struct. 2024;346:118430. doi: 10.1016/j.compstruct.2024.118430. DOI

Gordeliy E., Peirce A. Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput. Methods Appl. Mech. Eng. 2015;283:474–502. doi: 10.1016/j.cma.2014.09.004. DOI

Tian R., Wen L. Improved XFEM—An extra-dof free, well-conditioning, and interpolating XFEM. Comput. Methods Appl. Mech. Eng. 2015;285:639–658. doi: 10.1016/j.cma.2014.11.026. DOI

Agathos K., Chatzi E., Bordas S.P.A., Talaslidis D. A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. Int. J. Numer. Meth. Eng. 2016;105:643–677. doi: 10.1002/nme.4982. DOI

Agathos K., Ventura G., Chatzi E., Bordas S.P.A. Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. Int. J. Numer. Meth. Eng. 2018;113:252–276. doi: 10.1002/nme.5611. DOI

Lu X., Guo X.M., Tan V.B.C., Tay T.E. From diffuse damage to discrete crack: A coupled failure model for multi-stage progressive damage of composites. Comput. Methods Appl. Mech. Eng. 2021;379:113760. doi: 10.1016/j.cma.2021.113760. DOI

Liu G., Guo J., Bao Y. Convergence investigation of XFEM enrichment schemes for modeling cohesive cracks. Mathematics. 2022;10:383. doi: 10.3390/math10030383. DOI

Wang L.-X., Wen L.-F., Tian R., Feng C. Improved XFEM (IXFEM): Arbitrary multiple crack initiation, propagation and interaction analysis. Comput. Methods Appl. Mech. Eng. 2024;421:116791. doi: 10.1016/j.cma.2024.116791. DOI

Wen L.-F., Tian R., Wang L.-X., Feng C. Improved XFEM for multiple crack analysis: Accurate and efficient implementations for stress intensity factors. Comput. Methods Appl. Mech. Eng. 2023;411:116045. doi: 10.1016/j.cma.2023.116045. DOI

Iarve E.V., Zhou E., Ballard K.M., Gao Z., Adluru H.K., Mollenhauer D. Regularized X-FEM modeling of arbitrary 3D interacting crack networks. Int. J. Numer. Methods Eng. 2025;126:e7653. doi: 10.1002/nme.7653. DOI

Liu G., Guo J., Bao Y., Zhu H., Sun K. Multiscale simulation of debonding in fiber-reinforced composites by a combination of MsFEM and XFEM. Eng. Fract. Mech. 2024;306:110216. doi: 10.1016/j.engfracmech.2024.110216. DOI

Aubin J.P. Approximation des espaces de distributions et des opérateurs différentiels. Mém. Soc. Math. Fr. 1967;12:140. doi: 10.24033/msmf.12. DOI

Zlámal M. On the finite element method. Num. Math. 1968;12:394–409. doi: 10.1007/BF02161362. DOI

Jamet P. Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 1976;10:43–60. doi: 10.1051/m2an/197610R100431. DOI

Křížek M. On semiregular families of triangulations and linear interpolation. Appl. Math. 1991;36:223–232. doi: 10.21136/AM.1991.104461. DOI

Turner M.J., Clough R.W., Matrin H.C., Topp L.J. Stiffness and deflection analysis of complex structures. J. Aeronaut. Sci. 1956;23:805–823. doi: 10.2514/8.3664. DOI

Vala J., Kozák V. Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fract. Mech. 2020;107:102486. doi: 10.1016/j.tafmec.2020.102486. DOI

Vala J., Kozák V. Non-local damage modelling of quasi-brittle composites. Appl. Math. 2021;66:815–836. doi: 10.21136/AM.2021.0281-20. DOI

Vala J. Numerical approaches to the modelling of quasi-brittle crack propagation. Arch. Math. 2023;59:295–303. doi: 10.5817/AM2023-3-295. DOI

Zhang Q., Babuška I., Banerjee U. Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities. Comput. Methods Appl. Mech. Eng. 2016;311:476–502. doi: 10.1016/j.cma.2016.08.019. DOI

Nicaise S., Renard Y., Chahine E. Optimal convergence analysis for the extended finite element method. Int. J. Numer. Meth. Eng. 2011;86:528–548. doi: 10.1002/nme.3092. DOI

Chandler-Wilde S.N., Hewett D.P., Moiola A. Sobolev spaces on non-Lipschitz subsets of Rn with application to boundary integral equations on fractal screens. Integr. Equ. Oper. Theory. 2017;87:179–224. doi: 10.1007/s00020-017-2342-5. DOI

Zheng X., Chen J., Wang F. An extended virtual element method for elliptic interface problems. Comput. Math. Appl. 2024;156:87–102. doi: 10.1016/j.camwa.2023.12.019. DOI

Mascotto L. The role of stabilization in the virtual element method: A survey. Comput. Math. Appl. 2023;151:244–251. doi: 10.1016/j.camwa.2023.09.045. DOI

Chen Y., Sun D., Perego U., Li Q. Brittle crack propagation simulation based on the virtual element method and Jk-integral fracture criterion. Eng. Fract. Mech. 2025;314:110684. doi: 10.1016/j.engfracmech.2024.110684. DOI

Burenkov V.I. Sobolev Spaces on Domains. Teubner; Leipzig, Germany: 1998.

Cianchi A., Maz’ya V.G. Sobolev inequalities in arbitrary domains. Adv. Math. 2016;293:644–696. doi: 10.1016/j.aim.2016.02.012. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...