Inhibition of placental trophoblast fusion by guanylate-binding protein 5

. 2025 May 09 ; 11 (19) : eadt5388. [epub] 20250507

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40333975

Syncytin-1 and Syncytin-2 are envelope glycoproteins encoded by human endogenous retroviruses that have been exapted for the fusion of cytotrophoblast cells into syncytiotrophoblasts during placental development. Pregnancy complications like preeclampsia are associated with altered expression of interferon-stimulated genes, including guanylate-binding protein 5 (GBP5). Here, we show that misdirected antiviral activity of GBP5 impairs processing and activation of Syncytin-1. In contrast, the proteolytic activation of Syncytin-2 is not affected by GBP5, and its fusogenic activity is only modestly reduced. Mechanistic analyses revealed that Syncytin-1 is mainly cleaved by the GBP5 target furin, whereas Syncytin-2 is also efficiently processed by the proprotein convertase subtilisin/kexin type 7 (PCSK7) and thus resistant to GBP5-mediated restriction. Mutational analyses mapped PCSK7 processing of Syncytin-2 to a leucine residue upstream of the polybasic cleavage site. In summary, we identified an innate immune mechanism that impairs the activity of a co-opted endogenous retroviral envelope protein during pregnancy and may potentially contribute to the pathogenesis of pregnancy disorders.

Zobrazit více v PubMed

Johnson W. E., Origins and evolutionary consequences of ancient endogenous retroviruses. Nat. Rev. Microbiol. 17, 355–370 (2019). PubMed

Imakawa K., Nakagawa S., Miyazawa T., Baton pass hypothesis: Successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 20, 771–788 (2015). PubMed

Blaise S., de Parseval N., Bénit L., Heidmann T., Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl. Acad. Sci. U.S.A. 100, 13013–13018 (2003). PubMed PMC

Blond J. L., Lavillette D., Cheynet V., Bouton O., Oriol G., Chapel-Fernandes S., Mandrand B., Mallet F., Cosset F. L., An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329 (2000). PubMed PMC

Chen C.-P., Chen L.-F., Yang S.-R., Chen C.-Y., Ko C.-C., Chang G.-D., Chen H., Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol. Reprod. 79, 815–823 (2008). PubMed

Esnault C., Priet S., Ribet D., Vernochet C., Bruls T., Lavialle C., Weissenbach J., Heidmann T., A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc. Natl. Acad. Sci. U.S.A. 105, 17532–17537 (2008). PubMed PMC

Lavillette D., Marin M., Ruggieri A., Mallet F., Cosset F. L., Kabat D., The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J. Virol. 76, 6442–6452 (2002). PubMed PMC

Gholami Barzoki M., Shatizadeh Malekshahi S., Heydarifard Z., Mahmodi M. J., Soltanghoraee H., The important biological roles of Syncytin-1 of human endogenous retrovirus W (HERV-W) and Syncytin-2 of HERV-FRD in the human placenta development. Mol. Biol. Rep. 50, 7901–7907 (2023). PubMed

Knöfler M., Haider S., Saleh L., Pollheimer J., Gamage T., James J., Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 3479–3496 (2019). PubMed PMC

Maltepe E., Bakardjiev A. I., Fisher S. J., The placenta: Transcriptional, epigenetic, and physiological integration during development. J. Clin. Invest. 120, 1016–1025 (2010). PubMed PMC

Soares M. J., Varberg K. M., Iqbal K., Hemochorial placentation: Development, function, and adaptations. Biol. Reprod. 99, 196–211 (2018). PubMed PMC

Vento-Tormo R., Efremova M., Botting R. A., Turco M. Y., Vento-Tormo M., Meyer K. B., Park J.-E., Stephenson E., Polański K., Goncalves A., Gardner L., Holmqvist S., Henriksson J., Zou A., Sharkey A. M., Millar B., Innes B., Wood L., Wilbrey-Clark A., Payne R. P., Ivarsson M. A., Lisgo S., Filby A., Rowitch D. H., Bulmer J. N., Wright G. J., Stubbington M. J. T., Haniffa M., Moffett A., Teichmann S. A., Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018). PubMed PMC

Vargas A., Moreau J., Landry S., LeBellego F., Toufaily C., Rassart E., Lafond J., Barbeau B., Syncytin-2 plays an important role in the fusion of human trophoblast cells. J. Mol. Biol. 392, 301–318 (2009). PubMed

Sauter D., Kirchhoff F., Evolutionary conflicts and adverse effects of antiviral factors. eLife 10, e65243 (2021). PubMed PMC

Buchrieser J., Degrelle S. A., Couderc T., Nevers Q., Disson O., Manet C., Donahue D. A., Porrot F., Hillion K. H., Perthame E., Arroyo M. V., Souquere S., Ruigrok K., Dupressoir A., Heidmann T., Montagutelli X., Fournier T., Lecuit M., Schwartz O., IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. Science 365, 176–180 (2019). PubMed

Zani A., Zhang L., McMichael T. M., Kenney A. D., Chemudupati M., Kwiek J. J., Liu S.-L., Yount J. S., Interferon-induced transmembrane proteins inhibit cell fusion mediated by trophoblast syncytins. J. Biol. Chem. 294, 19844–19851 (2019). PubMed PMC

Knerr I., Huppertz B., Weigel C., Dotsch J., Wich C., Schild R. L., Beckmann M. W., Rascher W., Endogenous retroviral syncytin: Compilation of experimental research on syncytin and its possible role in normal and disturbed human placentogenesis. Mol. Hum. Reprod. 10, 581–588 (2004). PubMed

Turco M. Y., Moffett A., Development of the human placenta. Development 146, dev163428 (2019). PubMed

Makaroun S. P., Himes K. P., Differential methylation of Syncytin-1 and 2 distinguishes fetal growth restriction from physiologic small for gestational age. AJP Rep. 8, e18–e24 (2018). PubMed PMC

Laresgoiti-Servitje E., Gómez-López N., Olson D. M., An immunological insight into the origins of pre-eclampsia. Hum. Reprod. Update 16, 510–524 (2010). PubMed

Deng Z., Zhang L., Tang Q., Xu Y., Liu S., Li H., Circulating levels of IFN-γ, IL-1, IL-17 and IL-22 in pre-eclampsia: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 248, 211–221 (2020). PubMed

Dijmărescu A. L., Boldeanu L., Radu M., Rotaru I., Siminel M. A., Manolea M. M., Vrabie S. C., Novac M. B., Boldeanu M. V., Tănase F., The potential value of diagnostic and predictive serum biomarkers for preeclampsia. Rom. J. Morphol. Embryol. 62, 981–989 (2021). PubMed PMC

Guan C., Zhao F., Yang Z., Tang Q., Wang L., Li X., Zhang L., Deng Z., Hou H., Wang J., Xu Y., Zhang R., Lin Y., Tan P., Zhang Y., Liu S., Zhang L., A review of key cytokines based on gene polymorphism in the pathogenesis of pre-eclampsia. Am. J. Reprod. Immunol. 87, e13503 (2022). PubMed

Nishizawa H., Ota S., Suzuki M., Kato T., Sekiya T., Kurahashi H., Udagawa Y., Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod. Biol. Endocrinol. 9, 107 (2011). PubMed PMC

Yin N., Zhang H., Luo X., Ding Y., Xiao X., Liu X., Shan N., Zhang X., Deng Q., Zhuang B., Qi H., IL-27 activates human trophoblasts to express IP-10 and IL-6: Implications in the immunopathophysiology of preeclampsia. Mediators Inflamm. 2014, 926875 (2014). PubMed PMC

Rosa A., Chande A., Ziglio S., De Sanctis V., Bertorelli R., Goh S. L., McCauley S. M., Nowosielska A., Antonarakis S. E., Luban J., Santoni F. A., Pizzato M., HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 526, 212–217 (2015). PubMed PMC

Usami Y., Wu Y., Göttlinger H. G., SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 526, 218–223 (2015). PubMed PMC

Tada T., Zhang Y., Koyama T., Tobiume M., Tsunetsugu-Yokota Y., Yamaoka S., Fujita H., Tokunaga K., MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat. Med. 21, 1502–1507 (2015). PubMed

Yu C., Bai Y., Tan W., Bai Y., Li X., Zhou Y., Zhai J., Xue M., Tang Y.-D., Zheng C., Liu Q., Human MARCH1, 2, and 8 block Ebola virus envelope glycoprotein cleavage via targeting furin P domain. J. Med. Virol. 96, e29445 (2024). PubMed

Braun E., Hotter D., Koepke L., Zech F., Groß R., Sparrer K. M. J., Müller J. A., Pfaller C. K., Heusinger E., Wombacher R., Sutter K., Dittmer U., Winkler M., Simmons G., Jakobsen M. R., Conzelmann K.-K., Pöhlmann S., Münch J., Fackler O. T., Kirchhoff F., Sauter D., Guanylate-binding proteins 2 and 5 exert broad antiviral activity by inhibiting furin-mediated processing of viral envelope proteins. Cell Rep. 27, 2092–2104.e10 (2019). PubMed

Lodermeyer V., Suhr K., Schrott N., Kolbe C., Stürzel C. M., Krnavek D., Münch J., Dietz C., Waldmann T., Kirchhoff F., Goffinet C., 90K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 10, 111 (2013). PubMed PMC

Uhlén M., Fagerberg L., Hallström B. M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., Olsson I. M., Edlund K., Lundberg E., Navani S., Szigyarto C. A.-K., Odeberg J., Djureinovic D., Takanen J. O., Hober S., Alm T., Edqvist P.-H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J. M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Pontén F., Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015). PubMed

Štafl K., Trávníček M., Janovská A., Kučerová D., Pecnová Ľ., Yang Z., Stepanec V., Jech L., Salker M. S., Hejnar J., Trejbalová K., Receptor usage of Syncytin-1: ASCT2, but not ASCT1, is a functional receptor and effector of cell fusion in the human placenta. Proc. Natl. Acad. Sci. U.S.A. 121, e2407519121 (2024). PubMed PMC

Zhou Y., Gormley M. J., Hunkapiller N. M., Kapidzic M., Stolyarov Y., Feng V., Nishida M., Drake P. M., Bianco K., Wang F., McMaster M. T., Fisher S. J., Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J. Clin. Invest. 123, 2862–2872 (2013). PubMed PMC

Brockway H. M., Kallapur S. G., Buhimschi I. A., Buhimschi C. S., Ackerman W. E., Muglia L. J., Jones H. N., Unique transcriptomic landscapes identified in idiopathic spontaneous and infection related preterm births compared to normal term births. PLOS ONE 14, e0225062 (2019). PubMed PMC

Garrido-Gomez T., Ona K., Kapidzic M., Gormley M., Simon C., Genbacev O., Fisher S. J., Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion. Development 144, 767–777 (2017). PubMed PMC

Yi X., Liu H., Ou Y., Liu M., Zhu L., Chen H., Zhang J., Dominant inflammatory profile of the placenta in a preterm labor mouse model. J. Matern. Fetal Neonatal Med. 33, 1927–1933 (2020). PubMed

Ohyama N., Furugen A., Sawada R., Aoyagi R., Nishimura A., Umazume T., Narumi K., Kobayashi M., Effects of valproic acid on syncytialization in human placental trophoblast cell lines. Toxicol. Appl. Pharmacol. 474, 116611 (2023). PubMed

Tetro N., Imbar T., Wohl D., Eisenberg I., Yagel S., Shmuel M., Eyal S., The effects of valproic acid on early pregnancy human placentas: Pilot ex vivo analysis in cultured placental villi. Epilepsia 60, e47–e51 (2019). PubMed

Kaplan Y. C., Demir O., Use of phenytoin, phenobarbital carbamazepine, levetiracetam lamotrigine and valproate in pregnancy and breastfeeding: Risk of major malformations, dose-dependency, monotherapy vs polytherapy, pharmacokinetics and clinical implications. Curr. Neuropharmacol. 19, 1805–1824 (2021). PubMed PMC

Krönung S. K., Beyer U., Chiaramonte M. L., Dolfini D., Mantovani R., Dobbelstein M., LTR12 promoter activation in a broad range of human tumor cells by HDAC inhibition. Oncotarget 7, 33484–33497 (2016). PubMed PMC

Srinivasachar Badarinarayan S., Shcherbakova I., Langer S., Koepke L., Preising A., Hotter D., Kirchhoff F., Sparrer K. M. J., Schotta G., Sauter D., HIV-1 infection activates endogenous retroviral promoters regulating antiviral gene expression. Nucleic Acids Res. 48, 10890–10908 (2020). PubMed PMC

Krchlikova V., Lu Y., Sauter D., Viral influencers: Deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J. Virol. 99, e0135124 (2025). PubMed PMC

Pastuschek J., Nonn O., Gutiérrez-Samudio R. N., Murrieta-Coxca J. M., Muller J., Sanft J., Huppertz B., Markert U. R., Groten T., Morales-Prieto D. M., Molecular characteristics of established trophoblast-derived cell lines. Placenta 108, 122–133 (2021). PubMed

Krapp C., Hotter D., Gawanbacht A., McLaren P. J., Kluge S. F., Stürzel C. M., Mack K., Reith E., Engelhart S., Ciuffi A., Hornung V., Sauter D., Telenti A., Kirchhoff F., Guanylate binding protein (GBP) 5 is an interferon-inducible inhibitor of HIV-1 infectivity. Cell Host Microbe 19, 504–514 (2016). PubMed

Seidah N. G., The proprotein convertases, 20 years later. Methods Mol. Biol. 768, 23–57 (2011). PubMed

Dahms S. O., Hardes K., Steinmetzer T., Than M. E., X-ray structures of the proprotein convertase furin bound with substrate analogue inhibitors reveal substrate specificity determinants beyond the S4 pocket. Biochemistry 57, 925–934 (2018). PubMed

Dahms S. O., Hardes K., Becker G. L., Steinmetzer T., Brandstetter H., Than M. E., X-ray structures of human furin in complex with competitive inhibitors. ACS Chem. Biol. 9, 1113–1118 (2014). PubMed PMC

Mesner D., Reuschl A.-K., Whelan M. V. X., Bronzovich T., Haider T., Thorne L. G., Ragazzini R., Bonfanti P., Towers G. J., Jolly C., SARS-CoV-2 evolution influences GBP and IFITM sensitivity. Proc. Natl. Acad. Sci. U.S.A. 120, e2212577120 (2023). PubMed PMC

Ives C. W., Sinkey R., Rajapreyar I., Tita A. T. N., Oparil S., Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J. Am. Coll. Cardiol. 76, 1690–1702 (2020). PubMed

Ohwaki A., Nishizawa H., Kato A., Yoshizawa H., Miyazaki J., Noda Y., Sakabe Y., Sekiya T., Fujii T., Kurahashi H., Altered serum soluble furin and prorenin receptor levels in pregnancies with pre-eclampsia and fetal growth restriction. J. Gynecol. Obstet. Hum. Reprod. 50, 102198 (2021). PubMed

Aramesh A., Jahromi B. N., Samadi M., Gharesi-Fard B., Investigating the association between IL-27 and susceptibility to preeclampsia among Iranian women. Clin. Lab. 67, 10.7754/Clin.Lab.2021.210117 (2021). PubMed

Jahantigh D., Mousavi M., Forghani F., Javan M. R., Movahedinia S., Rezaei M., Association between maternal circulating IL-27 levels and preeclampsia. Cytokine 102, 163–167 (2018). PubMed

Valdés-López J. F., Hernández-Sarmiento L. J., Tamayo-Molina Y. S., Velilla-Hernández P. A., Rodenhuis-Zybert I. A., Urcuqui-Inchima S., Interleukin 27, like interferons, activates JAK-STAT signaling and promotes pro-inflammatory and antiviral states that interfere with dengue and chikungunya viruses replication in human macrophages. Front. Immunol. 15, 1385473 (2024). PubMed PMC

Crosley E. J., Elliot M. G., Christians J. K., Crespi B. J., Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: Evidence from genome-wide analyses. Placenta 34, 127–132 (2013). PubMed

Brocks D., Schmidt C. R., Daskalakis M., Jang H. S., Shah N. M., Li D., Li J., Zhang B., Hou Y., Laudato S., Lipka D. B., Schott J., Bierhoff H., Assenov Y., Helf M., Ressnerova A., Islam M. S., Lindroth A. M., Haas S., Essers M., Imbusch C. D., Brors B., Oehme I., Witt O., Lübbert M., Mallm J. P., Rippe K., Will R., Weichenhan D., Stoecklin G., Gerhäuser C., Oakes C. C., Wang T., Plass C., DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017). PubMed PMC

Côrte-Real J. V., Baldauf H. M., Melo-Ferreira J., Abrantes J., Esteves P. J., Evolution of guanylate binding protein (GBP) genes in muroid rodents (Muridae and Cricetidae) reveals an outstanding pattern of gain and loss. Front. Immunol. 13, 752186 (2022). PubMed PMC

Kresse A., Konermann C., Degrandi D., Beuter-Gunia C., Wuerthner J., Pfeffer K., Beer S., Analyses of murine GBP homology clusters based on in silico, in vitro and in vivo studies. BMC Genomics 9, 158 (2008). PubMed PMC

Morosin S. K., Delforce S. J., Corbisier de Meaultsart C., Lumbers E. R., Pringle K. G., FURIN and placental syncytialisation: A cautionary tale. Cell Death Dis. 12, 635 (2021). PubMed PMC

Imran M., Saleemi M. K., Chen Z., Wang X., Zhou D., Li Y., Zhao Z., Zheng B., Li Q., Cao S., Ye J., Decanoyl-Arg-Val-Lys-Arg-chloromethylketone: An antiviral compound that acts against flaviviruses through the inhibition of furin-mediated prM cleavage. Viruses 11, 1011 (2019). PubMed PMC

Veler H., Lun C. M., Waheed A. A., Freed E. O., Guanylate-binding protein 5 antagonizes viral glycoproteins independently of furin processing. MBio 15, e0208624 (2024). PubMed PMC

S. Wang, W. Li, L. Wang, S. K. Tiwari, W. Bray, L. Wu, N. Li, H. Hui, A. E. Clark, Q. Zhang, L. Zhang, A. F. Carlin, T. M. Rana, Interferon-inducible guanylate-binding protein 5 inhibits replication of multiple viruses by binding to the oligosaccharyltransferase complex and inhibiting glycoprotein maturation. bioRxiv 591800 [Preprint] (2024). 10.1101/2024.05.01.591800. DOI

Dull T., Zufferey R., Kelly M., Mandel R. J., Nguyen M., Trono D., Naldini L., A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998). PubMed PMC

Marr R. A., Guan H., Rockenstein E., Kindy M., Gage F. H., Verma I., Masliah E., Hersh L. B., Neprilysin regulates amyloid Beta peptide levels. J. Mol. Neurosci. 22, 5–11 (2004). PubMed

Suerth J. D., Maetzig T., Galla M., Baum C., Schambach A., Self-inactivating alpharetroviral vectors with a split-packaging design. J. Virol. 84, 6626–6635 (2010). PubMed PMC

Hotter D., Bosso M., Jønsson K. L., Krapp C., Sturzel C. M., Das A., Littwitz-Salomon E., Berkhout B., Russ A., Wittmann S., Gramberg T., Zheng Y., Martins L. J., Planelles V., Jakobsen M. R., Hahn B. H., Dittmer U., Sauter D., Kirchhoff F., IFI16 targets the transcription factor Sp1 to suppress HIV-1 transcription and latency reactivation. Cell Host Microbe 25, 858–872.e13 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...