Changing environmental conditions impact the phenotypic plasticity of Carex acuta and Glyceria maxima, two common wet grassland species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40357148
PubMed Central
PMC12066794
DOI
10.3389/fpls.2025.1542907
Knihovny.cz E-zdroje
- Klíčová slova
- allometry, biomass allocation, coexistence, niche differences, phenotypic plasticity, wet grasslands,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Maintenance of species coexistence is an important and on-going subject of plant ecology. Here, we aimed to determine how Carex acuta and Glyceria maxima, two common, co-occurring plant species in European wet grasslands, respond to changing environmental conditions and what these changes portend for coexistence of these two species. Such studies are important for predicting and modelling the effects of management and climate change on wet grassland plant species composition and for maintaining the ability of wet grasslands to provide their important ecosystem services including carbon sequestration and water purification. Based on past studies, we hypothesized that both species would be affected by hydrologic changes but that these effects would be modified by nutrient conditions with fertilization having a more positive impact on G. maxima. METHODS: We established a mesocosm to distinguish the effect of hydrology and nutrients on the biomass allocation patterns of these two species to determine how environmental conditions may impact the life history traits of these two species, which would influence their ability to co-exist. Plants were grown in pots from late May to early September 2019 and subjected to two nutrient and three water level treatments. Half of the plants were harvested in July while the other half were harvested in early September and their biomass allocation patterns calculated. Univariable and multivariable analyses were conducted to determine the effects of the environmental treatments on the measured parameters. In addition, we determined the phenotypic plasticity of the two species and whether these showed allometric relationships to plant size. RESULTS AND DISCUSSION: C. acuta was affected more by hydrologic changes, growing better in dry and saturated conditions, while fertilization had a more positive effect on G. maxima. Both species were stressed when flooded, but C. acuta more so than G. maxima. Contrary to our predictions, C. acuta produced more ramets and was taller than G. maxima. Both species showed plastic responses to changing nutrient and water conditions, but only some were related to plant size. Our results indicate that C. acuta and G. maxima are more likely to co-exist in oligo- to mesotrophic wet grasslands with fluctuating water levels.
Zobrazit více v PubMed
Adler P. B., Ellner S. P., Levine J. M. (2010). Coexistence of perennial plants: an embarrassment of niches. Ecol. Letts. 13, 1019–1029. doi: 10.1111/j.1461-0248.2010.01496.x PubMed DOI
Bardgett R. D., Mommer L., De Vries F. T. (2014). Going underground: roottraits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699. doi: 10.1016/j.tree.2014.10.006 PubMed DOI
Berg M., Joyce C., Burnside N. (2012). Differential responses of abandoned wet grassland plant communities to reinstated cutting management. Hydrobiologia 692, 83–97. doi: 10.1007/s10750-011-0826-x DOI
Bowler C. H., Weiss-Lehman C., Towers I. R., Mayfield M. M., Shoemaker L. G. (2022). Accounting for demographic uncertainty increases predictions for species coexistence: A case study with annual plants. Ecol. Letts. 25, 1618–1628. doi: 10.1111/ele.14011 PubMed DOI PMC
Chesson P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366. doi: 10.1146/annurev.ecolsys.31.1.343 DOI
Chesson P. (2018). Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794. doi: 10.1111/1365-2745.13035 DOI
Chytrý M., Tichý L., Dřevojan P., Sádlo J., Zelený D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia 90, 83–103. doi: 10.23855/preslia.2018.083 DOI
De Deyn G. B. (2017). Plant life history and above–belowground interactions: missing links. Oikos 126, 497–507. doi: 10.1111/oik.03967 DOI
De Kroon H., Hendriks M., van Ruijven J., Ravenek J., Padilla F. M., Jongejans E., et al. . (2012). Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J. Ecol. 100, 6–15. doi: 10.1111/j.1365-2745.2011.01906.x DOI
De Kroon H., Huber H., Stuefer J. F., van Groenendael J. M. (2005). A modular concept of phenotypic plasticity in plants. New Phytol. 166, 73–82. doi: 10.1111/j.1469-8137.2004.01310.x PubMed DOI
Dietrich O., Behrendt A. (2022). Wet grassland sites with shallow groundwater conditions: Effects on local meteorological characteristics. Water 14, 3560. doi: 10.3390/w14213560 DOI
Edwards K. R., Bárta J., Mastný J., Picek T. (2023). Multiple environmental factors, but not nutrient addition, directly affect wet grassland soil microbial community structure: a mesocosm study. FEMS Microbiol. Ecol. 99, 1–15. doi: 10.1093/femsec/fiad070 PubMed DOI PMC
Edwards K. R., Čížková H. (2020). Nutrient inputs and hydrology interact with plant functional type in affecting plant production and nutrient contents in a wet grassland. Wetlands 40, 707–719. doi: 10.1007/s13157-019-01216-0 DOI
Edwards K. R., Kaštovská E., Bárta J., Picek T., Šantrůčková H. (2025). Multiple environmental factors interact to affect wet grassland ecosystem functions. Ecol. Eng. 212, 107511. doi: 10.1016/j.ecoleng.2024.107511 DOI
Edwards K. R., Květ J., Ostrý I., Zákravský P., Hroudová Z. (2024). Peak−season and off−season distribution of mineral nutrients in littoral vegetation of an ancient shallow reservoir. Hydrobiologia 851, 1593–1606. doi: 10.1007/s10750-022-05079-1 DOI
Fox J., Weisberg S. (2023). An R Companion to Applied Regression (Thousand Oaks CA: Sage; ). Available online at: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (Accessed June 3, 2024).
Garcia A. (1992). Conserving the species-rich meadows of Europe. Agric. Ecosyst. Environ. 40, 219–232. doi: 10.1016/0167-8809(92)90094-R DOI
Givnish T. J. (1982). On the adaptive significance of leaf height in forest herbs. Am.Nat 120, 353–381. doi: 10.1086/283995 DOI
Glocker B., Mastný J., Picek T., Edwards K. R. (2024). Environmental effects on assimilated carbon quantity and quality in two different wet grassland plants. Wetlands 44, 91. doi: 10.1007/s13157-024-01853-0 DOI
Gomulkiewicz R., Stinchcombe J. R. (2022). Phenotypic plasticity made simple, but not too simple. Am. J. Bot. 109, 1519–1524. doi: 10.1002/ajb2.16068 PubMed DOI PMC
Grootjans A. P., ten Klooster W. P. (1980). Changes of groundwater regime in wet meadows. Acta Bot. Neerl. 29, 541–554. doi: 10.1111/j.1438-8677.1980.tb01257.x DOI
Harding R. J., Lloyd C. R. (2008). Evaporation and energy balance of a wet grassland at Tadham Moor on the Somerset Levels. Hydrol. Process. 22, 2346–2357. doi: 10.1002/hyp.6829 DOI
Hroudová Z., Hejný S., Zákravský P. (1988). “Littoral vegetation of the Rožmberk fishpond,” in Littoral Vegetation of the Rožmberk Fishpond and Its Mineral Nutrient Economy. Studie ČSAV, 88/9. Ed. Hroudová Z. (Academia, Praha, Czech Republic: ), 23–60.
Hroudová Z., Zákravský P. (2002). “Littoral plant communities and soils,” in Freshwater Wetlands and Their Sustainable Future, vol. 28 . Eds. Květ J., Jeník J., Soukupová L. Man and the biosphere series (Parthenon publishing, Boca Raton, Florida, USA: ), 195–210.
IPCC. Core Writing Team (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. Lee H., Romero J. (Geneva, Switzerland: IPCC; ). doi: 10.59327/IPCC/AR6-9789291691647 DOI
Jameson E. E., Elgersma K., Martina J. P., Currie W. S., Goldberg D. E. (2022). Size-dependent analyses provide insights into the reproductive allocation and plasticity of invasive and native Typha . Biol. Invasions 24, 3799–3815. doi: 10.1007/s10530-022-02881-9 DOI
Joyce C. B. (2014). Ecological consequences and restoration potential of abandoned wet grasslands. Ecol. Eng. 66, 91–102. doi: 10.1016/j.ecoleng.2013.05.008 DOI
Joyce C. B., Simpson M., Casanova M. (2016). Future wet grasslands: ecological implications of climate change.0. Ecosyst. Health Sustain 2, e01240. doi: 10.1002/ehs2.1240 DOI
Klimkowska A., van Diggelen R., Bakker J. P., Grootjans A. P. (2007). Wet meadow restoration in Western Europe: A quantitative assessment of the effectiveness of several techniques. Biol. Conserv. 140, 318–328. doi: 10.1016/j.biocon.2007.08.024 DOI
Lamber J. M. (1947). Biological flora of the British Isles: Glyceria maxima (Hartm.) Holmb. J. Ecol. 34, 310–344. doi: 10.2307/2256721 DOI
Legendre P. (2022). Model II regression user’s guide, R edition. lmodel2: Model II Regression. R package version 1.7-3. Available online at: https://CRAN.R-project.org/package=lmodel2 (Accessed May 24, 2024).
Lenth R. (2024). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.10.2. Available online at: https://CRAN.R-project.org/package=emmeans (Accessed June 3, 2024).
Lubbe F. C., Bitomský M., Bartoš M., Marešová I., Martínková J., Klimešová J. (2023). Trash or treasure: Rhizome conservation during drought. Fuct. Ecol. 37, 2300–2311. doi: 10.1111/1365-2435.14385 DOI
Manton M., Angelstam P. (2021). Macroecology of north European wet grassland landscapes: Habitat quality, waders, avian predators and nest predation. Sustainability 13, 8138. doi: 10.3390/su13158138 DOI
Menges E. S., Waller D. M. (1983). Plant strategies in relation to elevation and light in floodplain herbs. Am. Nat. 122, 454–473. doi: 10.1086/284149 DOI
Metcalf C. J. E., Rees M., Alexander J. M., Rose K. (2006). Growth-survival trade-offs and allometries in rosette-forming perennials. Funct. Ecol. 20, 217–225. doi: 10.1111/j.1365-2435.2006.01084.x DOI
Mugwedi L. F., Goodall J., Witkowski E. T. F., Byrne M. J. (2014). The role of reproduction in Glyceria maxima invasion. Afr. J. Range For. Sci. 1-8. doi: 10.2989/10220119.2014.929177 DOI
NOBANIS, European Network on Invasive Alien Species (2019). Glyceria maxima. Available online at: https://www.nobanis.org/species-info/?taxaId=1940 (Accessed February 20 2025).
Nurminen L. (2003). Macrophyte species composition reflecting water quality changes in adjacent water bodies of Lake Hiidenvesi, SW Finland. Annales Bot. Fenn. 40, 199–208.
Oddi F. J., Miquez F. E., Ghermandi L., Bianchi L. O., Garibaldi L. A. (2019). A nonlinear mixed-effects modelling approach for ecological data: Using temporal dynamics of vegetation moisture as an example. Ecol. Evol. 9, 10225–10240. doi: 10.1002/ece3.5543 PubMed DOI PMC
Pezeshki S. R. (2001). Wetland plant responses to soil flooding. Environ. Exper. Bot. 46, 299–312. doi: 10.1016/S0098-8472(01)00107-1 DOI
Pigliucci M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture (Baltimore: Johns Hopkins University Press; ).
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team (2016). nlme: linear and nonlinear mixed effects models. Available online at: http://CRAN.R-project.org/package=nlme (Accessed June 17 2024).
Prach K. (1993). Vegetational changes in a wet meadow complex, South Bohemia, Czech Republic. Folia Geobot. Phytotax 28, 1–13. doi: 10.1007/BF02853197 DOI
Prach K. (2008). Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. Phytotax. 43, 119–130. doi: 10.1007/s12224-008-9011-z DOI
Reich P. B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301. doi: 10.1111/1365-2745.12211 DOI
Schneider H. M. (2022). Characterization, costs, cues and future perspectives of phenotypic plasticity. Ann. Bot. 130, 131–148. doi: 10.1093/aob/mcac087 PubMed DOI PMC
Shipley B., De Bello F., Cornelissen J. H. C., Laliberté E., Laughlin D. C., Reich P. B. (2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931. doi: 10.1007/s00442-016-3549-x PubMed DOI
Silvertown J. (2004). Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611. doi: 10.1016/j.tree.2004.09.003 DOI
Sorrell B. K., Brix H., Fitridge I., Konnerup D., Lambertini C. (2012). Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species. Aquat. Bot. 103, 37–47. doi: 10.1016/j.aquabot.2012.05.008 DOI
Tallowin J. R. B., Jefferson R. G. (1999). Hay production from lowland seminatural grasslands: a review of implications for ruminant livestock systems. Grass Forage Sci. 54, 99–115. doi: 10.1046/j.1365-2494.1999.00171.x DOI
Tardella F. M., Bricca A., Goia I. G., Catorci A. (2020). How mowing restores montane Mediterranean grasslands following cessation of traditional livestock grazing. Agric. Ecosyst. Environ. 295, 106880. doi: 10.1016/j.agee.2020.106880 DOI
Tasset E., Boulanger T., Diquélou S., Laîné P., Lemauviel-Lavenant S. (2019). Plant trait to fodder quality relationships at both species and community levels in wet grasslands. Ecol. Indic. 97, 389–397. doi: 10.1016/j.ecolind.2018.10.035 DOI
Tilman D. (1982). Resource Competition and Community Structure (Princeton: Princeton University Press; ). PubMed
Tylová-Munzarová E., Lorenzen B., Brix H., Vojtisková L., Votrubová O. (2005). Effect of NH4+/NO3– availability on nitrate reductase activity and nitrogen accumulation in wetland helophytes Phragmites australis and Glyceria maxima . Aquat. Bot. 55, 49–60. doi: 10.1016/j.aquabot.2005.01.006 DOI
Weiner J. (2004). Allocation, plasticity and allometry in plants. Persp. Plant Ecol. Evol. Syst. 6, 207–215. doi: 10.1078/1433-8319-00083 DOI
Zelnik I., Čarni A. (2013). Plant species diversity and composition of wet grasslands in relation to environmental factors. Biodivers. Conserv. 22, 2179–2192. doi: 10.1007/s10531-013-0448-x DOI