Comparative Analysis of Polyphenolic Acids from Various Zea mays Parts in Ultrasound-Assisted Extraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_PrF_2025_022
Palacky University in Olomouc
PubMed
40361541
PubMed Central
PMC12071472
DOI
10.3390/foods14091458
PII: foods14091458
Knihovny.cz E-zdroje
- Klíčová slova
- Zea mays, antioxidants, polyphenols, therapeutic applications, ultrasound extraction,
- Publikační typ
- časopisecké články MeSH
In this study, we compared different parameters in the ultrasound-assisted extraction of polyphenolic acids from seven parts of Zea mays (kernels, leaves, stems, corn silks, roots, the whole plant, and the whole fermented plant) to identify its richest natural sources. Additionally, the correlation between extraction parameters and polyphenol yield was investigated. The extraction was performed using ultrasound at varying powers (480 or 240 W) and frequencies (80 or 37 kHz). Total phenolic content (TPC) was determined using the Folin-Ciocalteu assay, while radical scavenging activity (RSA) was assessed via the DPPH assay. The TPC values ranged from 0.69 ± 0.00008 mg GAE/g to 4.07 ± 0.0004 mg GAE/g in corn. RSA analysis revealed the highest scavenging activity in corn silk (80.06% ± 1.01) and the lowest in kernels (2.77% ± 0.90). High-performance liquid chromatography identified up to 22 different phenolic acids per sample, with the 5 most abundant being chlorogenic acid, protocatechuic acid ethyl ester, quercetin, sinapic acid, and trans-cinnamic acid. The study found small effects of power and frequency on the extraction efficiency. This suggests a practical advantage for industrial-scale applications, as using 240 W instead of 480 W under the same conditions can reduce energy consumption without compromising yield.
Zobrazit více v PubMed
Corn|USDA Foreign Agricultural Service. [(accessed on 15 January 2025)]; Available online: https://www.fas.usda.gov/data/production/commodity/0440000.
Corn|History, Cultivation, Uses, & Description|Britannica. [(accessed on 15 January 2025)]. Available online: https://www.britannica.com/plant/corn-plant.
Pellagra: Definition, Symptoms & Treatment. [(accessed on 3 March 2025)]. Available online: https://my.clevelandclinic.org/health/diseases/23905-pellagra.
Samad N., Manzoor N., Batool A., Noor A., Khaliq S., Aurangzeb S., Bhatti S.A., Imran I. Protective Effects of Niacin Following High Fat Rich Diet: An In-Vivo and In-Silico Study. Sci. Rep. 2023;13:21343. doi: 10.1038/s41598-023-48566-8. PubMed DOI PMC
Trofin D.-M., Sardaru D.-P., Trofin D., Onu I., Tutu A., Onu A., Onită C., Galaction A.I., Matei D.V. Oxidative Stress in Brain Function. Antioxidants. 2025;14:297. doi: 10.3390/antiox14030297. PubMed DOI PMC
Tang K., Sham H., Hui E., Kirkland J.B. Niacin Deficiency Causes Oxidative Stress in Rat Bone Marrow Cells but Not through Decreased NADPH or Glutathione Status. J. Nutr. Biochem. 2008;19:746–753. doi: 10.1016/j.jnutbio.2007.10.003. PubMed DOI
Zhu Y., Wang K., Jia X., Fu C., Yu H., Wang Y. Antioxidant Peptides, the Guardian of Life from Oxidative Stress. Med. Res. Rev. 2023;44:275–364. doi: 10.1002/med.21986. PubMed DOI
Więdłocha M., Zborowska N., Marcinowicz P., Dębowska W., Dębowska M., Zalewska A., Maciejczyk M., Waszkiewicz N., Szulc A. Oxidative Stress Biomarkers among Schizophrenia Inpatients. Brain Sci. 2023;13:490. doi: 10.3390/brainsci13030490. PubMed DOI PMC
Orfali R., Alwatban A.Z., Orfali R.S., Lau L., Chea N., Alotaibi A.M., Nam Y.W., Zhang M. Oxidative Stress and Ion Channels in Neurodegenerative Diseases. Front. Physiol. 2024;15:1320086. doi: 10.3389/fphys.2024.1320086. PubMed DOI PMC
Amponsah-Offeh M., Diaba-Nuhoho P., Speier S., Morawietz H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants. 2023;12:281. doi: 10.3390/antiox12020281. PubMed DOI PMC
Abbas M., Saeed F., Anjum F.M., Afzaal M., Tufail T., Bashir M.S., Ishtiaq A., Hussain S., Suleria H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017;20:1689–1699. doi: 10.1080/10942912.2016.1220393. DOI
Mandal M.K., Domb A.J. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics. 2024;16:718. doi: 10.3390/pharmaceutics16060718. PubMed DOI PMC
Li Z., Kanwal R., Yue X., Li M., Xie A. Polyphenols and Intestinal Microorganisms: A Review of Their Interactions and Effects on Human Health. Food Biosci. 2024;62:105220. doi: 10.1016/j.fbio.2024.105220. DOI
Kim Y., Keogh J.B., Clifton P.M. Polyphenols and Glycemic Control. Nutrients. 2016;8:17. doi: 10.3390/nu8010017. PubMed DOI PMC
Ciupei D., Colişar A., Leopold L., Stănilă A., Diaconeasa Z.M. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods. 2024;13:4131. doi: 10.3390/foods13244131. PubMed DOI PMC
Jomova K., Alomar S.Y., Valko R., Liska J., Nepovimova E., Kuca K., Valko M. Flavonoids and Their Role in Oxidative Stress, Inflammation, and Human Diseases. Chem.-Biol. Interact. 2025;413:111489. doi: 10.1016/j.cbi.2025.111489. PubMed DOI
Bouyahya A., Omari N.E., Hachlafi N.E., Jemly M.E., Hakkour M., Balahbib A., Menyiy N.E., Bakrim S., Mrabti H.N., Khouchlaa A., et al. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules. 2022;27:3286. doi: 10.3390/molecules27103286. PubMed DOI PMC
Pap N., Fidelis M., Azevedo L., Do Carmo M.A.V., Wang D., Mocan A., Pereira E.P.R., Xavier-Santos D., Sant’Ana A.S., Yang B., et al. Berry Polyphenols and Human Health: Evidence of Antioxidant, Anti-Inflammatory, Microbiota Modulation, and Cell-Protecting Effects. Curr. Opin. Food Sci. 2021;42:167–186. doi: 10.1016/j.cofs.2021.06.003. DOI
Wan C., Langyan S., Echeverría J., Devkota H.P., Tewari D., Moosavi M.A., Ezzat S.M., Perez-Vazquez A., Fraga-Corral M., Cravotto G., et al. Edible Fruits and Berries as a Source of Functional Polyphenols: Current Scene and Future Perspectives. Phytochem. Rev. 2023 doi: 10.1007/s11101-023-09892-x. DOI
Pérez-Jiménez J., Neveu V., Vos F., Scalbert A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010;64:S112–S120. doi: 10.1038/ejcn.2010.221. PubMed DOI
Sánchez-Nuño Y.A., Zermeño-Ruiz M., Vázquez-Paulino O.D., Nuño K., Villarruel-López A. Bioactive Compounds from Pigmented Corn (Zea mays L.) and Their Effect on Health. Biomolecules. 2024;14:338. doi: 10.3390/biom14030338. PubMed DOI PMC
Feregrino-Pérez A.A., Mercado-Luna A., Murillo-Cárdenas C.A., González-Santos R., Chávez-Servín J.L., Vargas-Madriz A.F., Luna-Sánchez E. Polyphenolic Compounds and Antioxidant Capacity in Native Maize of the Sierra Gorda of Querétaro. Agronomy. 2024;14:142. doi: 10.3390/agronomy14010142. DOI
Liu Y., Shi Y., Zhang M., Han F., Liao W., Duan X. Natural Polyphenols for Drug Delivery and Tissue Engineering Construction: A Review. Eur. J. Med. Chem. 2024;266:116141. doi: 10.1016/j.ejmech.2024.116141. PubMed DOI
El-Saadony M.T., Yang T., Saad A.M., Alkafaas S.S., Elkafas S.S., Eldeeb G.S., Mohammed D.M., Salem H.M., Korma S.A., Loutfy S.A., et al. Polyphenols: Chemistry, Bioavailability, Bioactivity, Nutritional Aspects and Human Health Benefits: A Review. Int. J. Biol. Macromol. 2024;277:134223. doi: 10.1016/j.ijbiomac.2024.134223. PubMed DOI
Parcheta M., Swisłocka R., Orzechowska S., Akimowicz M., Nska R.C., Lewandowski W., Batista K.A., Fernandes K.F. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials. 2021;14:1984. doi: 10.3390/ma14081984. PubMed DOI PMC
Zahra M., Abrahamse H., George B.P. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants. 2024;13:922. doi: 10.3390/antiox13080922. PubMed DOI PMC
Fukui K., You F., Kato Y., Yuzawa S., Kishimoto A., Hara T., Kanome Y., Harakawa Y., Yoshikawa T. A Blended Vitamin Supplement Improves Spatial Cognitive and Short-Term Memory in Aged Mice. Int. J. Mol. Sci. 2024;25:2804. doi: 10.3390/ijms25052804. PubMed DOI PMC
Mao S., Wang K., Lei Y., Yao S., Lu B., Huang W. Antioxidant Synergistic Effects of Osmanthus Fragrans Flowers with Green Tea and Their Major Contributed Antioxidant Compounds. Sci. Rep. 2017;7:46501. doi: 10.1038/srep46501. PubMed DOI PMC
Chakraborty S., Bhattacharjee P. Ultrasonication-Assisted Extraction of a Phytomelatonin-Rich, Erucic Acid-Lean Nutraceutical Supplement from Mustard Seeds: An Antioxidant Synergy in the Extract by Reductionism. J. Food Sci. Technol. 2020;57:1278–1289. doi: 10.1007/s13197-019-04161-2. PubMed DOI PMC
Neacșu S.M., Mititelu M., Ozon E.A., Musuc A.M., Iuga I.D.M., Manolescu B.N., Petrescu S., Pandele Cusu J., Rusu A., Surdu V.-A., et al. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals. 2024;17:690. doi: 10.3390/ph17060690. PubMed DOI PMC
Peng S., Zhu M., Li S., Ma X., Hu F. Ultrasound-Assisted Extraction of Polyphenols from Chinese Propolis. Front. Sustain. Food Syst. 2023;7:1131959. doi: 10.3389/fsufs.2023.1131959. DOI
Zafra-Rojas Q.Y., Cruz-Cansino N.S., Quintero-Lira A., Gómez-Aldapa C.A., Alanís-García E., Cervantes-Elizarrarás A., Güemes-Vera N., Ramírez-Moreno E. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues. Molecules. 2016;21:950. doi: 10.3390/molecules21070950. PubMed DOI PMC
Siddiqui S.A., Redha A.A., Salauddin M., Harahap I.A., Rupasinghe H.P.V. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit. Rev. Anal. Chem. 2023;55:139–160. doi: 10.1080/10408347.2023.2266846. PubMed DOI
Zeković Z., Bušić A., Komes D., Vladić J., Adamović D., Pavlić B. Coriander Seeds Processing: Sequential Extraction of Non-Polar and Polar Fractions Using Supercritical Carbon Dioxide Extraction and Ultrasound-Assisted Extraction. Food Bioprod. Process. 2015;95:218–227. doi: 10.1016/j.fbp.2015.05.012. DOI
Thangaiah A., Gunalan S., Rathnasamy V.K., Aruliah R., AlSalhi M.S., Devanesan S., Rajamohan R., Malik T. Optimization of Ultrasound-Assisted Phytomolecules Extraction from Moringa Leaves (Moringa oleifera Lam) Using Response Surface Methodology. Cogent Food Agric. 2024;10:2309834. doi: 10.1080/23311932.2024.2309834. DOI
Senrayan J., Venkatachalam S. Ultrasonic Acoustic-Cavitation as a Novel and Emerging Energy Efficient Technique for Oil Extraction from Kapok Seeds. Innov. Food Sci. Emerg. Technol. 2020;62:102347. doi: 10.1016/j.ifset.2020.102347. DOI
Dalmau E., Rosselló C., Eim V., Ratti C., Simal S. Ultrasound-Assisted Aqueous Extraction of Biocompounds from Orange Byproduct: Experimental Kinetics and Modeling. Antioxidants. 2020;9:352. doi: 10.3390/antiox9040352. PubMed DOI PMC
Thiruvalluvan M., Gupta R., Kaur B.P. Optimization of Ultrasound-Assisted Extraction Conditions for the Recovery of Phenolic Compounds from Sweet Lime Peel Waste. Biomass Convers. Biorefinery. 2024;15:6781–6803. doi: 10.1007/s13399-024-05752-6. DOI
Luque-Alcaraz A.G., Hernández-Téllez C.N., Graciano-Verdugo A.Z., Toledo-Guillén A.R., Hernández-Abril P.A. Exploring Antioxidant Potential and Phenolic Compound Extraction from Vitis vinifera L. Using Ultrasound-Assisted Extraction. Green Process. Synth. 2024;13:20230141. doi: 10.1515/gps-2023-0141. DOI
Zia S., Khan M.R., Aadil R.M., Medina-Meza I.G. Bioactive Recovery from Watermelon Rind Waste Using Ultrasound-Assisted Extraction. ACS Food Sci. Technol. 2024;4:687–699. doi: 10.1021/acsfoodscitech.3c00601. DOI
Kumar G., Jayasree T.J., Rout R.K., Rao P.S., Manchikanti P. Ultrasound Assisted Green Extraction of Phenolic Components from Basella alba. J. Food Meas. Charact. 2024;18:5904–5915. doi: 10.1007/s11694-024-02617-4. DOI
Christou A., Parisis N.A., Tzakos A.G., Gerothanassis I.P., Goulas V. Optimization of β-Cyclodextrin Based Ultrasound-Assisted Extraction: A Green Strategy to Enhance the Extraction of Bioactive Compounds from Taro Leaf Byproduct. Sustain. Chem. Pharm. 2024;41:101728. doi: 10.1016/j.scp.2024.101728. DOI
Sawangwong W., Kiattisin K., Somwongin S., Wongrattanakamon P., Chaiyana W., Poomanee W., Sainakham M. The Assessment of Composition, Biological Properties, Safety and Molecular Docking of Corn Silk (Zea mays L.) Extracts from the Valorization of Agricultural Waste Products in Thailand. Ind. Crops Prod. 2024;212:118352. doi: 10.1016/j.indcrop.2024.118352. DOI
Boateng I.D., Kumar R., Daubert C.R., Flint-Garcia S., Mustapha A., Kuehnel L., Agliata J., Li Q., Wan C., Somavat P. Sonoprocessing Improves Phenolics Profile, Antioxidant Capacity, Structure, and Product Qualities of Purple Corn Pericarp Extract. Ultrason. Sonochemistry. 2023;95:106418. doi: 10.1016/j.ultsonch.2023.106418. PubMed DOI PMC
Molole G.J., Gure A., Abdissa N. Determination of Total Phenolic Content and Antioxidant Activity of Commiphora mollis (Oliv.) Engl. Resin. BMC Chem. 2022;16:48. doi: 10.1186/s13065-022-00841-x. PubMed DOI PMC
Lozano-Sánchez J., Borrás-Linares I., Sass-Kiss A., Segura-Carretero A. Chapter 13—Chromatographic Technique: High-Performance Liquid Chromatography (HPLC) In: Sun D.-W., editor. Modern Techniques for Food Authentication. 2nd ed. Academic Press; Cambridge, MA, USA: 2018. pp. 459–526.
Rammohan A., Reddy J.S., Sravya G., Rao C.N., Zyryanov G.V. Chalcone Synthesis, Properties and Medicinal Applications: A Review. Environ. Chem. Lett. 2020;18:433–458. doi: 10.1007/s10311-019-00959-w. DOI
Shi J.-Y., Zou X.-B., Zhao J.-W., Mel H., Wang K.-L., Wang X., Chen H. Determination of Total Flavonoids Content in Fresh Ginkgo Biloba Leaf with Different Colors Using near Infrared Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012;94:271–276. doi: 10.1016/j.saa.2012.03.078. PubMed DOI
Kong K.W., Mat-Junit S., Ismail A., Aminudin N., Abdul-Aziz A. Polyphenols in Barringtonia racemosa and Their Protection against Oxidation of LDL, Serum and Haemoglobin. Food Chem. 2014;146:85–93. doi: 10.1016/j.foodchem.2013.09.012. PubMed DOI
da Silva C., Prasniewski A., Calegari M.A., de Lima V.A., Oldoni T.L.C. Determination of Total Phenolic Compounds and Antioxidant Activity of Ethanolic Extracts of Propolis Using ATR–FT-IR Spectroscopy and Chemometrics. Food Anal. Methods. 2018;11:2013–2021. doi: 10.1007/s12161-018-1161-x. DOI
Hao J.-W., Chen Y., Chen N.-D. Assessment of ATR-NIR and ATR-MIR Spectroscopy as an Analytical Tool for the Quantification of the Total Polyphenols in Dendrobium huoshanense. Phytochem. Anal. 2020;31:366–374. doi: 10.1002/pca.2903. PubMed DOI
Trifunschi S., Munteanu M.F., Agotici V., Pintea S., Gligor R. Determination of Flavonoid and Polyphenol Compounds in Viscum album and Allium sativum Extracts. Int. Curr. Pharm. J. 2015;4:382–385. doi: 10.3329/icpj.v4i5.22861. DOI
Oliveira R.N., Mancini M.C., Oliveira F.C.S.d., Passos T.M., Quilty B., da Silva Moreira Thiré R.M., McGuinness G.B. FTIR Analysis and Quantification of Phenols and Flavonoids of Five Commercially Available Plants Extracts Used in Wound Healing. Matéria (Rio J.) 2016;21:767–779. doi: 10.1590/S1517-707620160003.0072. DOI
Agatonovic-Kustrin S., Gegechkori V., Petrovich D.S., Ilinichna K.T., Morton D.W. HPTLC and FTIR Fingerprinting of Olive Leaves Extracts and ATR-FTIR Characterisation of Major Flavonoids and Polyphenolics. Molecules. 2021;26:6892. doi: 10.3390/molecules26226892. PubMed DOI PMC
Suriano S., Balconi C., Valoti P., Redaelli R. Comparison of Total Polyphenols, Profile Anthocyanins, Color Analysis, Carotenoids and Tocols in Pigmented Maize. LWT. 2021;144:111257. doi: 10.1016/j.lwt.2021.111257. DOI
Rodriguez M.D., Monsierra L., Mansilla P.S., Pérez G.T., de Pascual-Teresa S. Phenolic Characterization of a Purple Maize (Zea mays Cv. “Moragro”) by HPLC–QTOF-MS and Study of Its Bioaccessibility Using a Simulated In Vitro Digestion/Caco-2 Culture Model. J. Agric. Food Chem. 2024;72:6327–6338. doi: 10.1021/acs.jafc.3c08960. PubMed DOI PMC
Zagoskina N.V., Zubova M.Y., Nechaeva T.L., Kazantseva V.V., Goncharuk E.A., Katanskaya V.M., Baranova E.N., Aksenova M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review) Int. J. Mol. Sci. 2023;24:13874. doi: 10.3390/ijms241813874. PubMed DOI PMC
Saini N., Anmol A., Kumar S., Wani A.W., Bakshi M., Dhiman Z. Exploring Phenolic Compounds as Natural Stress Alleviators in Plants—A Comprehensive Review. Physiol. Mol. Plant Pathol. 2024;133:102383. doi: 10.1016/j.pmpp.2024.102383. DOI
Wang X., Zhao H., Ma C., Lv L., Feng J., Han S. Gallic Acid Attenuates Allergic Airway Inflammation via Suppressed Interleukin-33 and Group 2 Innate Lymphoid Cells in Ovalbumin-Induced Asthma in Mice. Int. Forum Allergy Rhinol. 2018;8:1284–1290. doi: 10.1002/alr.22207. PubMed DOI
Macedo C., Costa P.C., Rodrigues F. Bioactive Compounds from Actinidia arguta Fruit as a New Strategy to Fight Glioblastoma. Food Res. Int. 2024;175:113770. doi: 10.1016/j.foodres.2023.113770. PubMed DOI
Kakkar S., Bais S. A Review on Protocatechuic Acid and Its Pharmacological Potential. Int. Sch. Res. Not. 2014;2014:952943. doi: 10.1155/2014/952943. PubMed DOI PMC
Cadena-Iniguez J., Santiago-Osorio E., Sanchez-Flores N., Salazar-Aguilar S., Soto-Hernandez R.M., de la Luz Riviello-Flores M., Macias-Zaragoza V.M., Aguiniga-Sanchez I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules. 2024;29:1439. doi: 10.3390/molecules29071439. PubMed DOI PMC
Song J., He Y., Luo C., Feng B., Ran F., Xu H., Ci Z., Xu R., Han L., Zhang D. New Progress in the Pharmacology of Protocatechuic Acid: A Compound Ingested in Daily Foods and Herbs Frequently and Heavily. Pharmacol. Res. 2020;161:105109. doi: 10.1016/j.phrs.2020.105109. PubMed DOI
Navarro-Orcajada S., Matencio A., Vicente-Herrero C., García-Carmona F., López-Nicolás J.M. Study of the Fluorescence and Interaction between Cyclodextrins and Neochlorogenic Acid, in Comparison with Chlorogenic Acid. Sci. Rep. 2021;11:3275. doi: 10.1038/s41598-021-82915-9. PubMed DOI PMC
Jakobek L., Pöc K., Valenteković M., Matić P. The Behavior of Phenolic Compounds from Apples during Simulated Gastrointestinal Digestion with Focus on Chlorogenic Acid. Foods. 2024;13:693. doi: 10.3390/foods13050693. PubMed DOI PMC
Che J., Zhao T., Liu W., Chen S., Yang G., Li X., Liu D. Neochlorogenic Acid Enhances the Antitumor Effects of Pingyangmycin via Regulating TOP2A. Mol. Med. Rep. 2021;23:158. doi: 10.3892/mmr.2020.11797. PubMed DOI
Manuja R., Sachdeva S., Jain A., Chaudhary J. A Comprehensive Review on Biological Activities of P-Hydroxy Benzoic Acid and Its Derivatives. Int. J. Pharm. Sci. Rev. Res. 2013;22:109–115.
Joshi A.N., Chandrakar A.K., Wasewar K.L. Reactive Extraction of 4 Hydroxybenzoic Acid Using Tri-n-Butyl Phosphate in Toluene and Petroleum Ether at 298 K. J. Chem. Eng. Data. 2022;67:2505–2513. doi: 10.1021/acs.jced.2c00269. DOI
Vergote D., Cren-Olivé C., Chopin V., Toillon R.-A., Rolando C., Hondermarck H., Bourhis X.L. (−)-Epigallocatechin (EGC) of Green Tea Induces Apoptosis of Human Breast Cancer Cells but Not of Their Normal Counterparts. Breast Cancer Res. Treat. 2002;76:195–201. doi: 10.1023/A:1020833410523. PubMed DOI
Chen X.-Q., Wang X.-B., Guan R.-F., Tu J., Gong Z.-H., Zheng N., Yang J.-H., Zhang Y.-Y., Ying M.-M. Blood Anticoagulation and Antiplatelet Activity of Green Tea (−)-Epigallocatechin (EGC) in Mice. Food Funct. 2013;4:1521–1525. doi: 10.1039/c3fo60088b. PubMed DOI
Sirasunthorn N., Jantho T., Ubolsaard T. Catechin Detection in Tea Samples Based on Catechin-Induced Conformational Changes in Papain. J. Food Compos. Anal. 2024;132:106313. doi: 10.1016/j.jfca.2024.106313. DOI
Ding Y., Li H., Cao S., Yu Y. Effects of Catechin on the Malignant Biological Behavior of Gastric Cancer Cells through the PI3K/Akt Signaling Pathway. Toxicol. Appl. Pharmacol. 2024;490:117036. doi: 10.1016/j.taap.2024.117036. PubMed DOI
Tsai Y.-J., Chen B.-H. Preparation of Catechin Extracts and Nanoemulsions from Green Tea Leaf Waste and Their Inhibition Effect on Prostate Cancer Cell PC-3. Int. J. Nanomed. 2016;11:1907–1926. doi: 10.2147/IJN.S103759. PubMed DOI PMC
Matejczyk M., Ofman P., Juszczuk-Kubiak E., Świsłocka R., Shing W.L., Kesari K.K., Prakash B., Lewandowski W. Biological Effects of Vanillic Acid, Iso-Vanillic Acid, and Orto-Vanillic Acid as Environmental Pollutants. Ecotoxicol. Environ. Saf. 2024;277:116383. doi: 10.1016/j.ecoenv.2024.116383. PubMed DOI
Girawale S.D., Meena S.N., Nandre V.S., Waghmode S.B., Kodam K.M. Biosynthesis of Vanillic Acid by Ochrobactrum anthropi and Its Applications. Bioorganic Med. Chem. 2022;72:117000. doi: 10.1016/j.bmc.2022.117000. PubMed DOI
Eshwar D.S., Antony F.M., Kumar A., Wasewar K.L. Extraction Equilibrium of Vanillic Acid Using Natural Solvents. Chem. Data Collect. 2023;44:101007. doi: 10.1016/j.cdc.2023.101007. DOI
Neamțu A.-A., Maghiar T.A., Turcuș V., Maghiar P.B., Căpraru A.-M., Lazar B.-A., Dehelean C.-A., Pop O.L., Neamțu C., Totolici B.D., et al. A Comprehensive View on the Impact of Chlorogenic Acids on Colorectal Cancer. Curr. Issues Mol. Biol. 2024;46:6783–6804. doi: 10.3390/cimb46070405. PubMed DOI PMC
Ho C.-Y., Tang C.-H., Ho T.-L., Wang W.-L., Yao C.-H. Chlorogenic Acid Prevents Ovariectomized-Induced Bone Loss by Facilitating Osteoblast Functions and Suppressing Osteoclast Formation. Aging. 2024;16:4832–4840. doi: 10.18632/aging.205635. PubMed DOI PMC
Deguchi Y., Ito M. Caffeic Acid and Rosmarinic Acid Contents in Genus Perilla. J. Nat. Med. 2020;74:834–839. doi: 10.1007/s11418-020-01418-5. PubMed DOI
Mudgal J., Basu Mallik S., Nampoothiri M., Kinra M., Hall S., Grant G.D., Anoopkumar-Dukie S., Davey A.K., Rao C.M., Arora D. Effect of Coffee Constituents, Caffeine and Caffeic Acid on Anxiety and Lipopolysaccharide-Induced Sickness Behavior in Mice. J. Funct. Foods. 2020;64:103638. doi: 10.1016/j.jff.2019.103638. DOI
Takeda H., Tsuji M., Inazu M., Egashira T., Matsumiya T. Rosmarinic Acid and Caffeic Acid Produce Antidepressive-like Effect in the Forced Swimming Test in Mice. Eur. J. Pharmacol. 2002;449:261–267. doi: 10.1016/S0014-2999(02)02037-X. PubMed DOI
Okur M.E., Sakul A.A. Mechanism of Antinociceptive Action of Syringic Acid. J. Res. Pharm. 2021;25:277–286. doi: 10.29228/jrp.18. DOI
Bartel I., Mandryk I., Horbańczuk J.O., Wierzbicka A., Koszarska M. Nutraceutical Properties of Syringic Acid in Civilization Diseases—Review. Nutrients. 2024;16:10. doi: 10.3390/nu16010010. PubMed DOI PMC
Wang Z., Lu Z., Chen Y., Wang C., Gong P., Jiang R., Liu Q. Targeting the AKT-P53/CREB Pathway with Epicatechin for Improved Prognosis of Traumatic Brain Injury. CNS Neurosci. Ther. 2024;30:e14364. doi: 10.1111/cns.14364. PubMed DOI PMC
Tapia-Curimil G., Castro-Sepulveda M., Zbinden-Foncea H. Effect of Epicatechin Consumption on the Inflammatory Pathway and Mitochondria Morphology in PBMC from a R350P Desminopathy Patient: A Case Report. Physiol. Rep. 2024;12:e16020. doi: 10.14814/phy2.16020. PubMed DOI PMC
Zhang J., Liu J., Han Z., He X., Herrera-Balandrano D.D., Xiang J. Comprehensive Evaluation on Phenolic Derivatives and Antioxidant Activities of Diverse Yellow Maize Varieties. Food Chem. 2025;464:141602. doi: 10.1016/j.foodchem.2024.141602. PubMed DOI
Wang C., Huang X.-L., Mu Y.-M., Li Y.-S., He Y.-M., Tang H.-B. Synergistic Effects of Trans-p-Coumaric Acid Isolated from the Ethanol Extract of Gynura procumbens in Promoting Intestinal Absorption of Chlorogenic Acid and Reversing Alcoholic Fatty Liver Disease. J. Ethnopharmacol. 2022;295:115407. doi: 10.1016/j.jep.2022.115407. PubMed DOI
Zhai Y., Wang T., Fu Y., Yu T., Ding Y., Nie H. Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. Int. J. Mol. Sci. 2023;24:8011. doi: 10.3390/ijms24098011. PubMed DOI PMC
Khan K.A., Saleem M.H., Afzal S., Hussain I., Ameen F., Fahad S. Ferulic Acid: Therapeutic Potential Due to Its Antioxidant Properties, Role in Plant Growth, and Stress Tolerance. Plant Growth Regul. 2024;104:1329–1353. doi: 10.1007/s10725-024-01243-w. DOI
Sherefedin U., Belay A., Gudishe K., Kebede A., Kumela A.G., Asemare S. Photophysical Properties of Sinapic Acid and Ferulic Acid and Their Binding Mechanism with Caffeine. J. Fluoresc. 2024 doi: 10.1007/s10895-024-03689-7. online ahead of print . PubMed DOI
Precupas A., Popa V.T. Impact of Sinapic Acid on Bovine Serum Albumin Thermal Stability. Int. J. Mol. Sci. 2024;25:936. doi: 10.3390/ijms25020936. PubMed DOI PMC
Kaczmarek-Szczepańska B., Kleszczyński K., Zasada L., Chmielniak D., Hollerung M.B., Dembińska K., Pałubicka K., Steinbrink K., Swiontek Brzezinska M., Grabska-Zielińska S. Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application. Int. J. Mol. Sci. 2024;25:5891. doi: 10.3390/ijms25115891. PubMed DOI PMC
Tang Y., Jiang X. Effect of Solubilization with Surfactant on the Antioxidant Activity of Ellagic Acid. Tenside Surfactants Deterg. 2024;61:250–258. doi: 10.1515/tsd-2023-2565. DOI
Wang L., Zhao J., Mao Y., Liu L., Li C., Wu H., Zhao H., Wu Q. Tartary Buckwheat Rutin: Accumulation, Metabolic Pathways, Regulation Mechanisms, and Biofortification Strategies. Plant Physiol. Biochem. 2024;208:108503. doi: 10.1016/j.plaphy.2024.108503. PubMed DOI
Sirotkin A.V. Positive Effects of Rutin on Female Reproduction. Reprod. Domest. Anim. 2024;59:e14540. doi: 10.1111/rda.14540. PubMed DOI
Sen A., Atmaca P., Terzioglu G., Arslan S. Anticarcinogenic Effect and Carcinogenic Potential of the Dietary Phenolic Acid: O-Coumaric Acid. Nat. Prod. Commun. 2013;8:1269–1274. doi: 10.1177/1934578X1300800922. PubMed DOI
Maheshwari A., Kishore N. Deciphering the Spectroscopic and Thermodynamic Aspects of Binding of Biologically Important Antioxidants with the Alkali Induced State of Human Serum Albumin. Phys. Chem. Chem. Phys. 2024;26:28689–28704. doi: 10.1039/D4CP03636K. PubMed DOI
Torrisi C., Malfa G.A., Acquaviva R., Castelli F., Sarpietro M.G. Effect of Protocatechuic Acid Ethyl Ester on Biomembrane Models: Multilamellar Vesicles and Monolayers. Membranes. 2022;12:283. doi: 10.3390/membranes12030283. PubMed DOI PMC
Miklasińska M., Kępa M., Wojtyczka R.D., Idzik D., Zdebik A., Orlewska K., Wąsik T.J. Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs. Molecules. 2015;20:13536–13549. doi: 10.3390/molecules200813536. PubMed DOI PMC
Koc T.Y., Dogan S., Karadayi M. Potential Using of Resveratrol and Its Derivatives in Medicine. Eurasian J. Med. 2024;56:136–141. doi: 10.5152/eurasianjmed.2024.24392. PubMed DOI PMC
Bulut O., Baydemir I., Kilic G., Domínguez-Andrés J., Netea M.G. Resveratrol Potentiates BCG-Induced Trained Immunity in Human Monocytes. J. Leukoc. Biol. 2025;117:qiae241. doi: 10.1093/jleuko/qiae241. PubMed DOI
Jia K., Shi P., Zhang L., Yan X., Xu J., Liao K. Trans-Cinnamic Acid Alleviates High-Fat Diet-Induced Renal Injury via JNK/ERK/P38 MAPK Pathway. J. Nutr. Biochem. 2025;135:109769. doi: 10.1016/j.jnutbio.2024.109769. PubMed DOI
Yilmaz S., Sova M., Ergün S. Antimicrobial Activity of Trans-cinnamic Acid and Commonly Used Antibiotics against Important Fish Pathogens and Nonpathogenic Isolates. J. Appl. Microbiol. 2018;125:1714–1727. doi: 10.1111/jam.14097. PubMed DOI
Periferakis A., Periferakis K., Badarau I.A., Petran E.M., Popa D.C., Caruntu A., Costache R.S., Scheau C., Caruntu C., Costache D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022;23:15054. doi: 10.3390/ijms232315054. PubMed DOI PMC
Ren J., Lu Y., Qian Y., Chen B., Wu T., Ji G. Recent Progress Regarding Kaempferol for the Treatment of Various Diseases (Review) Exp. Ther. Med. 2019;18:2759–2776. doi: 10.3892/etm.2019.7886. PubMed DOI PMC
Shergujri M.A., Bhatt D., Chadha A., Bhaduri G.A. Single-Step Process for Isolation of Pure Quercetin from Aqueous Extract of Waste Onion Peels. ACS Food Sci. Technol. 2024;4:2980–2988. doi: 10.1021/acsfoodscitech.4c00580. DOI
Giuliani C., Di Dalmazi G., Bucci I., Napolitano G. Quercetin and Thyroid. Antioxidants. 2024;13:1202. doi: 10.3390/antiox13101202. PubMed DOI PMC