Review of the lumbar infusion test use in pediatric populations: state-of-the-art and future perspectives
Language English Country Great Britain, England Media electronic
Document type Journal Article, Review
PubMed
40375270
PubMed Central
PMC12082959
DOI
10.1186/s12987-025-00662-9
PII: 10.1186/s12987-025-00662-9
Knihovny.cz E-resources
- Keywords
- Children, Hydrocephalus, Infusion testing, Intracranial hypertension, Lumbar infusion test, Pediatric, Pediatric neurosurgery,
- MeSH
- Child MeSH
- Hydrocephalus * diagnosis MeSH
- Humans MeSH
- Adolescent MeSH
- Child, Preschool MeSH
- Pseudotumor Cerebri * diagnosis MeSH
- Cerebrospinal Fluid Pressure * physiology MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: The lumbar infusion test (LIT) is a routine part of the diagnostic process of various CSF dynamics disorders in adults. However, it is rarely used in the paediatric population due to a lack of evidence substantiating its efficacy and overall indications. METHODS: Articles utilizing the LIT in a paediatric cohort (≤ 18 years) were included according to the PRISMA guidelines with the Newcastle-Ottawa Scale to assess the risk of bias. This review was registered at PROSPERO database under number: CRD42024625857. RESULTS: A total of 15 studies, yielding 441 patients, were included in the review. The most common indications for LIT were to predict shunt responsiveness in hydrocephalus and idiopathic intracranial hypertension (IIH). In IIH, the interaction between cerebrospinal fluid pressure (CSFp) and sagittal sinus pressure (SSp) may offer valuable diagnostic insights and present a novel assessment approach. The LIT is a validated tool, especially effective for predicting shunt responsiveness and detecting malfunctions in both IIH and hydrocephalus. CONCLUSIONS: Data surrounding LIT usage in children is lacking and most studies are outdated. Caution is needed when interpreting resistance to outflow (Rout) due to potential overestimation, with more attention directed to CSFp and the pressure within the venous system coupling in IIH. Future studies should focus on standardizing LIT protocols across age groups with focusing more on signal characteristics rather than individual parameters and fostering interdisciplinary collaboration to optimize diagnostic accuracy.
Department of Neurology King's College Hospital NHS Foundation Trust London UK
Department of Radiation Sciences Faculty of Medicine Umeå University Umeå Sweden
See more in PubMed
Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS. 2019;16:9. 10.1186/s12987-019-0129-6. PubMed PMC
Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36:1338–50. 10.1177/0271678x16648711 PubMed PMC
Atchley TJ, Vukic B, Vukic M, Walters BC. Review of cerebrospinal fluid physiology and dynamics: A call for medical education reform. Neurosurgery. 2022;91:1–7. 10.1227/neu.0000000000002000. PubMed
Katzman R, Hussey F. A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology. 1970;20:534–44. 10.1212/wnl.20.6.534. PubMed
Hasselbalch SG, Carlsen JF, Alaouie MM, Munch TN, Holst AV, Taudorf S, Rørvig-Løppentien C, Juhler M, Waldemar G. Prediction of shunt response in idiopathic normal pressure hydrocephalus by combined lumbar infusion test and preoperative imaging scoring. Eur J Neurol. 2023;30:3047–55. 10.1111/ene.15981. PubMed
Bech-Azeddine R, Gjerris F, Waldemar G, Czosnyka M, Juhler M. Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochir (Wien). 2005;147:1027–35. 10.1007/s00701-005-0589-0. discussion 1035– 1026. PubMed
Skalicky P, Mladek A, Bubenikova A, Vlasak A, Whitley H, Bradac O. Lumbar infusion test. In: Bradac O, editor. Normal pressure hydrocephalus: pathophysiology, diagnosis, treatment and outcome. Volume 1, 1 ed. Springer Cham; 2023. 10.1007/978-3-031-36522-5.
Jannelli G, Calvanese F, Pirina A, Gergelé L, Vallet A, Palandri G, Czosnyka M, Czosnyka Z, Manet R. Assessment of CSF dynamics using infusion study: tips and tricks. World Neurosurg. 2024;189:33–41. 10.1016/j.wneu.2024.05.131. PubMed
Skalický P, Mládek A, Vlasák A, De Lacy P, Beneš V, Bradáč O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg Rev. 2020;43:1451–64. 10.1007/s10143-019-01201-5. PubMed
Lalou AD, Levrini V, Czosnyka M, Gergelé L, Garnett M, Kolias A, Hutchinson PJ, Czosnyka Z. Cerebrospinal fluid dynamics in non-acute post-traumatic ventriculomegaly. Fluids Barriers CNS. 2020;17:24. 10.1186/s12987-020-00184-6. PubMed PMC
Lalou AD, Czosnyka M, Garnett MR, Nabbanja E, Petrella G, Hutchinson PJ, Pickard JD, Czosnyka Z. Shunt infusion studies: impact on patient outcome, including health economics. Acta Neurochir (Wien). 2020;162:1019–31. 10.1007/s00701-020-04212-0. PubMed PMC
Häni L, Fung C, Jesse CM, Ulrich CT, Miesbach T, Cipriani DR, Dobrocky T, Z’Graggen WJ, Raabe A, Piechowiak EI, et al. Insights into the natural history of spontaneous intracranial hypotension from infusion testing. Neurology. 2020;95:e247–55. 10.1212/wnl.0000000000009812. PubMed
Lalou AD, McTaggart JS, Czosnyka ZH, Garnett MR, Krishnakumar D, Czosnyka M. Cerebrospinal fluid dynamics in pediatric pseudotumor cerebri syndrome. Childs Nerv Syst. 2020;36:73–86. 10.1007/s00381-019-04263-4. PubMed
Stroh JN, Albers DJ, Bennett TD. Personalization and pragmatism: pediatric intracranial pressure and cerebral perfusion pressure treatment thresholds. Pediatr Crit Care Med. 2021;22:213–6. 10.1097/pcc.0000000000002637. PubMed PMC
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. 10.1136/bmj.n71. PubMed PMC
Wells G, Shea B, O’Connell D, Peterson j, Welch V, Losos M, Tugwell P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000.
Zhang C, Long SY, You WD, Xu XX, Gao GY, Yang XF. The value of the correlation coefficient between the ICP wave amplitude and the mean ICP level (RAP) combined with the resistance to CSF outflow (Rout) for early prediction of the outcome before shunting in posttraumatic hydrocephalus. Front Neurol. 2022;13:881568. 10.3389/fneur.2022.881568. PubMed PMC
Kim DJ, Kim H, Kim YT, Yoon BC, Czosnyka Z, Park KW, Czosnyka M. Thresholds of resistance to CSF outflow in predicting shunt responsiveness. Neurol Res. 2015;37:332–40. 10.1179/1743132814y.0000000454. PubMed
Dias SF, Lalou AD, Spang R, Haas-Lude K, Garnett M, Fernandez H, Czosnyka M, Schuhmann MU, Czosnyka Z. Value of computerized shunt infusion study in assessment of pediatric hydrocephalus shunt function-a two center cross-sectional study. Childs Nerv Syst. 2020;36:59–71. 10.1007/s00381-019-04264-3. PubMed
Svedung Wettervik T, Howells T, Enblad P, Lewén A. Intracranial pressure variability: relation to clinical outcome, intracranial pressure-volume index, cerebrovascular reactivity and blood pressure variability. J Clin Monit Comput. 2020;34:733–41. 10.1007/s10877-019-00387-9. PubMed PMC
Hall A, O’Kane R. The best marker for guiding the clinical management of patients with Raised intracranial pressure-the RAP index or the mean pulse amplitude? Acta Neurochir (Wien). 2016;158:1997–2009. 10.1007/s00701-016-2932-z. PubMed PMC
Krishnakumar D, Pickard JD, Czosnyka Z, Allen L, Parker A. Idiopathic intracranial hypertension in childhood: pitfalls in diagnosis. Dev Med Child Neurol. 2014;56:749–55. 10.1111/dmcn.12475. PubMed
Di Rocco C, Caldarelli M, Maira G, Rossi GF. The study of cerebrospinal fluid dynamics in apparently ‘arrested’ hydrocephalus in children. Childs Brain. 1977;3:359–74. 10.1159/000119687. PubMed
Caldarelli M, Di Rocco C, Rossi GF. Lumbar subarachnoid infusion test in paediatric neurosurgery. Dev Med Child Neurol. 1979;21:71–82. 10.1111/j.1469-8749.1979.tb01582.x. PubMed
Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol. 1980;7:508–14. 10.1002/ana.410070603. PubMed
Sklar FH, Beyer CW Jr, Ramanathan M, Clark WK. Servo-controlled lumbar infusions in children. A quantitative approach to the problem of arrested hydrocephalus. J Neurosurg. 1980;52:87–98. 10.3171/jns.1980.52.1.0087. PubMed
di Rocco C, Caldarelli M, di Trapani G. Infratentorial arachnoid cysts in children. Childs Brain. 1981;8:119–33. 10.1159/000119973. PubMed
Blomquist HK, Sundin S, Ekstedt J. Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986;49:536–48. 10.1136/jnnp.49.5.536. PubMed PMC
Di Rocco C, Caldarelli M, Mangiola A, Milani A. The lumbar subarachnoid infusion test in infants. Childs Nerv Syst. 1988;4:16–21. 10.1007/BF00274075. PubMed
Czosnyka M, Wollk-Laniewski P, Batorski L, Zaworski W. Analysis of intracranial pressure waveform during infusion test. Acta Neurochir (Wien). 1988;93:140–5. 10.1007/BF01402897. PubMed
Czosnyka M, Batorski L, Roszkowski M, Tomaszewski J, Wocjan J, Walencik A, Zabolotny W. Cerebrospinal compensation in hydrocephalic children. Childs Nerv Syst. 1993;9:17–22. 10.1007/bf00301929. PubMed
Lundar T. Shunt removal or replacement based on intraventricular infusion tests. Childs Nerv Syst. 1994;10:337–9. 10.1007/BF00335174. PubMed
Eide PK, Due-Tønnessen B, Helseth E, Lundar T. Assessment of intracranial pressure volume relationships in childhood: the lumbar infusion test versus intracranial pressure monitoring. Childs Nerv Syst. 2001;17:382–90. 10.1007/s003810000437. PubMed
Munch TN, Bech-Azeddine R, Boegeskov L, Gjerris F, Juhler M. Evaluation of the lumbar and ventricular infusion test in the diagnostic strategy of pediatric hydrocephalus and the therapeutic implications. Childs Nerv Syst. 2007;23:67–71. 10.1007/s00381-006-0186-4. PubMed
Gaier ED, Heidary G. Pediatric idiopathic intracranial hypertension. Semin Neurol. 2019;39:704–10. 10.1055/s-0039-1698743. PubMed
Lalou AD, Czosnyka M, Czosnyka ZH, Krishnakumar D, Pickard JD, Higgins NJ. Coupling of CSF and sagittal sinus pressure in adult patients with pseudotumour cerebri. Acta Neurochir (Wien). 2020;162:1001–9. 10.1007/s00701-019-04095-w. PubMed PMC
Amin S, Monaghan M, Forrest K, Harijan P, Mehta V, Moran M, Mukhtyar B, Muthusamy B, Parker A, Prabhakar P, et al. Consensus recommendations for the assessment and management of idiopathic intracranial hypertension in children and young people. Arch Dis Child. 2024;109:654. 10.1136/archdischild-2023-326545. PubMed
Zhao K, Gu W, Liu C, Kong D, Zheng C, Chen W, Li X, Liang Y, Zhou H. Advances in the Understanding of the complex role of venous sinus stenosis in idiopathic intracranial hypertension. J Magn Reson Imaging. 2022;56:645–54. 10.1002/jmri.28177. PubMed PMC
Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002;59:1492–5. 10.1212/01.wnl.0000029570.69134.1b. PubMed
Davson H, Domer FR, Hollingsworth JR. The mechanism of drainage of the cerebrospinal fluid. Brain. 1973;96:329–36. 10.1093/brain/96.2.329. PubMed
Lalou AD, Levrini V, Garnett M, Nabbanja E, Kim DJ, Gergele L, Bjornson A, Czosnyka Z, Czosnyka M. Validation of Davson’s equation in patients suffering from idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2018;160:1097–103. 10.1007/s00701-018-3497-9. PubMed
Malm J, Kristensen B, Markgren P, Ekstedt J. CSF hydrodynamics in idiopathic intracranial hypertension: a long-term study. Neurology. 1992;42:851–8. 10.1212/wnl.42.4.851. PubMed
Lublinsky S, Kesler A, Friedman A, Horev A, Shelef I. Quantifying response to intracranial pressure normalization in idiopathic intracranial hypertension via dynamic neuroimaging. J Magn Reson Imaging. 2018;47:913–27. 10.1002/jmri.25857. PubMed
Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49:1214–22. 10.1097/00006123-200111000-00034. PubMed
Eide PK, Pripp AH, Ringstad G, Valnes LM. Impaired glymphatic function in idiopathic intracranial hypertension. Brain Commun. 2021;3(2):fcab043. 10.1093/braincomms/fcab043. PubMed PMC
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid Villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–57. 10.1007/s00018-020-03706-5. PubMed PMC
Børgesen SE, Gjerris F. The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain. 1982;105:65–86. 10.1093/brain/105.1.65. PubMed
Marmarou A, Foda MA, Bandoh K, Yoshihara M, Yamamoto T, Tsuji O, Zasler N, Ward JD, Young HF. Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg. 1996;85:1026–35. 10.3171/jns.1996.85.6.1026. PubMed
Israelsson H, Carlberg B, Wikkelsö C, Laurell K, Kahlon B, Leijon G, Eklund A, Malm J. Vascular risk factors in INPH: A prospective case-control study (the INPH-CRasH study). Neurology. 2017;88:577–85. 10.1212/wnl.0000000000003583. PubMed PMC
Mládek A, Gerla V, Skalický P, Vlasák A, Zazay A, Lhotská L, Beneš V, Sr., Beneš V Jr., Bradáč O. Prediction of shunt responsiveness in suspected patients with normal pressure hydrocephalus using the lumbar infusion test: A machine learning approach. Neurosurgery. 2022;90:407–18. 10.1227/neu.0000000000001838. PubMed