• This record comes from PubMed

Review of the lumbar infusion test use in pediatric populations: state-of-the-art and future perspectives

. 2025 May 15 ; 22 (1) : 50. [epub] 20250515

Language English Country Great Britain, England Media electronic

Document type Journal Article, Review

Links

PubMed 40375270
PubMed Central PMC12082959
DOI 10.1186/s12987-025-00662-9
PII: 10.1186/s12987-025-00662-9
Knihovny.cz E-resources

BACKGROUND: The lumbar infusion test (LIT) is a routine part of the diagnostic process of various CSF dynamics disorders in adults. However, it is rarely used in the paediatric population due to a lack of evidence substantiating its efficacy and overall indications. METHODS: Articles utilizing the LIT in a paediatric cohort (≤ 18 years) were included according to the PRISMA guidelines with the Newcastle-Ottawa Scale to assess the risk of bias. This review was registered at PROSPERO database under number: CRD42024625857. RESULTS: A total of 15 studies, yielding 441 patients, were included in the review. The most common indications for LIT were to predict shunt responsiveness in hydrocephalus and idiopathic intracranial hypertension (IIH). In IIH, the interaction between cerebrospinal fluid pressure (CSFp) and sagittal sinus pressure (SSp) may offer valuable diagnostic insights and present a novel assessment approach. The LIT is a validated tool, especially effective for predicting shunt responsiveness and detecting malfunctions in both IIH and hydrocephalus. CONCLUSIONS: Data surrounding LIT usage in children is lacking and most studies are outdated. Caution is needed when interpreting resistance to outflow (Rout) due to potential overestimation, with more attention directed to CSFp and the pressure within the venous system coupling in IIH. Future studies should focus on standardizing LIT protocols across age groups with focusing more on signal characteristics rather than individual parameters and fostering interdisciplinary collaboration to optimize diagnostic accuracy.

See more in PubMed

Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS. 2019;16:9. 10.1186/s12987-019-0129-6. PubMed PMC

Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36:1338–50. 10.1177/0271678x16648711 PubMed PMC

Atchley TJ, Vukic B, Vukic M, Walters BC. Review of cerebrospinal fluid physiology and dynamics: A call for medical education reform. Neurosurgery. 2022;91:1–7. 10.1227/neu.0000000000002000. PubMed

Katzman R, Hussey F. A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology. 1970;20:534–44. 10.1212/wnl.20.6.534. PubMed

Hasselbalch SG, Carlsen JF, Alaouie MM, Munch TN, Holst AV, Taudorf S, Rørvig-Løppentien C, Juhler M, Waldemar G. Prediction of shunt response in idiopathic normal pressure hydrocephalus by combined lumbar infusion test and preoperative imaging scoring. Eur J Neurol. 2023;30:3047–55. 10.1111/ene.15981. PubMed

Bech-Azeddine R, Gjerris F, Waldemar G, Czosnyka M, Juhler M. Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochir (Wien). 2005;147:1027–35. 10.1007/s00701-005-0589-0. discussion 1035– 1026. PubMed

Skalicky P, Mladek A, Bubenikova A, Vlasak A, Whitley H, Bradac O. Lumbar infusion test. In: Bradac O, editor. Normal pressure hydrocephalus: pathophysiology, diagnosis, treatment and outcome. Volume 1, 1 ed. Springer Cham; 2023. 10.1007/978-3-031-36522-5.

Jannelli G, Calvanese F, Pirina A, Gergelé L, Vallet A, Palandri G, Czosnyka M, Czosnyka Z, Manet R. Assessment of CSF dynamics using infusion study: tips and tricks. World Neurosurg. 2024;189:33–41. 10.1016/j.wneu.2024.05.131. PubMed

Skalický P, Mládek A, Vlasák A, De Lacy P, Beneš V, Bradáč O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg Rev. 2020;43:1451–64. 10.1007/s10143-019-01201-5. PubMed

Lalou AD, Levrini V, Czosnyka M, Gergelé L, Garnett M, Kolias A, Hutchinson PJ, Czosnyka Z. Cerebrospinal fluid dynamics in non-acute post-traumatic ventriculomegaly. Fluids Barriers CNS. 2020;17:24. 10.1186/s12987-020-00184-6. PubMed PMC

Lalou AD, Czosnyka M, Garnett MR, Nabbanja E, Petrella G, Hutchinson PJ, Pickard JD, Czosnyka Z. Shunt infusion studies: impact on patient outcome, including health economics. Acta Neurochir (Wien). 2020;162:1019–31. 10.1007/s00701-020-04212-0. PubMed PMC

Häni L, Fung C, Jesse CM, Ulrich CT, Miesbach T, Cipriani DR, Dobrocky T, Z’Graggen WJ, Raabe A, Piechowiak EI, et al. Insights into the natural history of spontaneous intracranial hypotension from infusion testing. Neurology. 2020;95:e247–55. 10.1212/wnl.0000000000009812. PubMed

Lalou AD, McTaggart JS, Czosnyka ZH, Garnett MR, Krishnakumar D, Czosnyka M. Cerebrospinal fluid dynamics in pediatric pseudotumor cerebri syndrome. Childs Nerv Syst. 2020;36:73–86. 10.1007/s00381-019-04263-4. PubMed

Stroh JN, Albers DJ, Bennett TD. Personalization and pragmatism: pediatric intracranial pressure and cerebral perfusion pressure treatment thresholds. Pediatr Crit Care Med. 2021;22:213–6. 10.1097/pcc.0000000000002637. PubMed PMC

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. 10.1136/bmj.n71. PubMed PMC

Wells G, Shea B, O’Connell D, Peterson j, Welch V, Losos M, Tugwell P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000.

Zhang C, Long SY, You WD, Xu XX, Gao GY, Yang XF. The value of the correlation coefficient between the ICP wave amplitude and the mean ICP level (RAP) combined with the resistance to CSF outflow (Rout) for early prediction of the outcome before shunting in posttraumatic hydrocephalus. Front Neurol. 2022;13:881568. 10.3389/fneur.2022.881568. PubMed PMC

Kim DJ, Kim H, Kim YT, Yoon BC, Czosnyka Z, Park KW, Czosnyka M. Thresholds of resistance to CSF outflow in predicting shunt responsiveness. Neurol Res. 2015;37:332–40. 10.1179/1743132814y.0000000454. PubMed

Dias SF, Lalou AD, Spang R, Haas-Lude K, Garnett M, Fernandez H, Czosnyka M, Schuhmann MU, Czosnyka Z. Value of computerized shunt infusion study in assessment of pediatric hydrocephalus shunt function-a two center cross-sectional study. Childs Nerv Syst. 2020;36:59–71. 10.1007/s00381-019-04264-3. PubMed

Svedung Wettervik T, Howells T, Enblad P, Lewén A. Intracranial pressure variability: relation to clinical outcome, intracranial pressure-volume index, cerebrovascular reactivity and blood pressure variability. J Clin Monit Comput. 2020;34:733–41. 10.1007/s10877-019-00387-9. PubMed PMC

Hall A, O’Kane R. The best marker for guiding the clinical management of patients with Raised intracranial pressure-the RAP index or the mean pulse amplitude? Acta Neurochir (Wien). 2016;158:1997–2009. 10.1007/s00701-016-2932-z. PubMed PMC

Krishnakumar D, Pickard JD, Czosnyka Z, Allen L, Parker A. Idiopathic intracranial hypertension in childhood: pitfalls in diagnosis. Dev Med Child Neurol. 2014;56:749–55. 10.1111/dmcn.12475. PubMed

Di Rocco C, Caldarelli M, Maira G, Rossi GF. The study of cerebrospinal fluid dynamics in apparently ‘arrested’ hydrocephalus in children. Childs Brain. 1977;3:359–74. 10.1159/000119687. PubMed

Caldarelli M, Di Rocco C, Rossi GF. Lumbar subarachnoid infusion test in paediatric neurosurgery. Dev Med Child Neurol. 1979;21:71–82. 10.1111/j.1469-8749.1979.tb01582.x. PubMed

Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol. 1980;7:508–14. 10.1002/ana.410070603. PubMed

Sklar FH, Beyer CW Jr, Ramanathan M, Clark WK. Servo-controlled lumbar infusions in children. A quantitative approach to the problem of arrested hydrocephalus. J Neurosurg. 1980;52:87–98. 10.3171/jns.1980.52.1.0087. PubMed

di Rocco C, Caldarelli M, di Trapani G. Infratentorial arachnoid cysts in children. Childs Brain. 1981;8:119–33. 10.1159/000119973. PubMed

Blomquist HK, Sundin S, Ekstedt J. Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986;49:536–48. 10.1136/jnnp.49.5.536. PubMed PMC

Di Rocco C, Caldarelli M, Mangiola A, Milani A. The lumbar subarachnoid infusion test in infants. Childs Nerv Syst. 1988;4:16–21. 10.1007/BF00274075. PubMed

Czosnyka M, Wollk-Laniewski P, Batorski L, Zaworski W. Analysis of intracranial pressure waveform during infusion test. Acta Neurochir (Wien). 1988;93:140–5. 10.1007/BF01402897. PubMed

Czosnyka M, Batorski L, Roszkowski M, Tomaszewski J, Wocjan J, Walencik A, Zabolotny W. Cerebrospinal compensation in hydrocephalic children. Childs Nerv Syst. 1993;9:17–22. 10.1007/bf00301929. PubMed

Lundar T. Shunt removal or replacement based on intraventricular infusion tests. Childs Nerv Syst. 1994;10:337–9. 10.1007/BF00335174. PubMed

Eide PK, Due-Tønnessen B, Helseth E, Lundar T. Assessment of intracranial pressure volume relationships in childhood: the lumbar infusion test versus intracranial pressure monitoring. Childs Nerv Syst. 2001;17:382–90. 10.1007/s003810000437. PubMed

Munch TN, Bech-Azeddine R, Boegeskov L, Gjerris F, Juhler M. Evaluation of the lumbar and ventricular infusion test in the diagnostic strategy of pediatric hydrocephalus and the therapeutic implications. Childs Nerv Syst. 2007;23:67–71. 10.1007/s00381-006-0186-4. PubMed

Gaier ED, Heidary G. Pediatric idiopathic intracranial hypertension. Semin Neurol. 2019;39:704–10. 10.1055/s-0039-1698743. PubMed

Lalou AD, Czosnyka M, Czosnyka ZH, Krishnakumar D, Pickard JD, Higgins NJ. Coupling of CSF and sagittal sinus pressure in adult patients with pseudotumour cerebri. Acta Neurochir (Wien). 2020;162:1001–9. 10.1007/s00701-019-04095-w. PubMed PMC

Amin S, Monaghan M, Forrest K, Harijan P, Mehta V, Moran M, Mukhtyar B, Muthusamy B, Parker A, Prabhakar P, et al. Consensus recommendations for the assessment and management of idiopathic intracranial hypertension in children and young people. Arch Dis Child. 2024;109:654. 10.1136/archdischild-2023-326545. PubMed

Zhao K, Gu W, Liu C, Kong D, Zheng C, Chen W, Li X, Liang Y, Zhou H. Advances in the Understanding of the complex role of venous sinus stenosis in idiopathic intracranial hypertension. J Magn Reson Imaging. 2022;56:645–54. 10.1002/jmri.28177. PubMed PMC

Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002;59:1492–5. 10.1212/01.wnl.0000029570.69134.1b. PubMed

Davson H, Domer FR, Hollingsworth JR. The mechanism of drainage of the cerebrospinal fluid. Brain. 1973;96:329–36. 10.1093/brain/96.2.329. PubMed

Lalou AD, Levrini V, Garnett M, Nabbanja E, Kim DJ, Gergele L, Bjornson A, Czosnyka Z, Czosnyka M. Validation of Davson’s equation in patients suffering from idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2018;160:1097–103. 10.1007/s00701-018-3497-9. PubMed

Malm J, Kristensen B, Markgren P, Ekstedt J. CSF hydrodynamics in idiopathic intracranial hypertension: a long-term study. Neurology. 1992;42:851–8. 10.1212/wnl.42.4.851. PubMed

Lublinsky S, Kesler A, Friedman A, Horev A, Shelef I. Quantifying response to intracranial pressure normalization in idiopathic intracranial hypertension via dynamic neuroimaging. J Magn Reson Imaging. 2018;47:913–27. 10.1002/jmri.25857. PubMed

Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49:1214–22. 10.1097/00006123-200111000-00034. PubMed

Eide PK, Pripp AH, Ringstad G, Valnes LM. Impaired glymphatic function in idiopathic intracranial hypertension. Brain Commun. 2021;3(2):fcab043. 10.1093/braincomms/fcab043. PubMed PMC

Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid Villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–57. 10.1007/s00018-020-03706-5. PubMed PMC

Børgesen SE, Gjerris F. The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain. 1982;105:65–86. 10.1093/brain/105.1.65. PubMed

Marmarou A, Foda MA, Bandoh K, Yoshihara M, Yamamoto T, Tsuji O, Zasler N, Ward JD, Young HF. Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg. 1996;85:1026–35. 10.3171/jns.1996.85.6.1026. PubMed

Israelsson H, Carlberg B, Wikkelsö C, Laurell K, Kahlon B, Leijon G, Eklund A, Malm J. Vascular risk factors in INPH: A prospective case-control study (the INPH-CRasH study). Neurology. 2017;88:577–85. 10.1212/wnl.0000000000003583. PubMed PMC

Mládek A, Gerla V, Skalický P, Vlasák A, Zazay A, Lhotská L, Beneš V, Sr., Beneš V Jr., Bradáč O. Prediction of shunt responsiveness in suspected patients with normal pressure hydrocephalus using the lumbar infusion test: A machine learning approach. Neurosurgery. 2022;90:407–18. 10.1227/neu.0000000000001838. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...