Neuroprotective Riluzole-Releasing Electrospun Implants for Spinal Cord Injury

. 2025 Jun 02 ; 22 (6) : 2905-2916. [epub] 20250516

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40378306

Spinal cord injury (SCI) results in paralysis, driven partly by widespread glutamate-induced secondary excitotoxic neuronal cell death in and around the injury site. While there is no curative treatment, the standard of care often requires interventive decompression surgery and repair of the damaged dura mater close to the injury locus using dural substitutes. Such intervention provides an opportunity for early and local delivery of therapeutics directly to the injured cord via a drug-loaded synthetic dural substitute for localized pharmacological therapy. Riluzole, a glutamate-release inhibitor, has shown neuroprotective potential in patients with traumatic SCI, and therefore, this study aimed to develop an electrospun riluzole-loaded synthetic dural substitute patch suitable for the treatment of glutamate-induced injury in neurons. A glutamate-induced excitotoxicity was optimized in SH-SY5Y cells by exploring the effect of glutamate concentration and exposure duration. The most effective timing for administering riluzole was found to be at the onset of glutamate release as this helped to limit extended periods of glutamate-induced excitotoxic cell death. Riluzole-loaded patches were prepared by using blend electrospinning. Physicochemical characterization of the patches showed the successful encapsulation of riluzole within polycaprolactone fibers. A drug release study showed an initial burst release of riluzole within the first 24 h, followed by a sustained release of the drug over 52 days to up to approximately 400 μg released for the highest loading of riluzole within fiber patches. Finally, riluzole eluted from electrospun fibers remained pharmacologically active and was capable of counteracting glutamate-induced excitotoxicity in SH-SY5Y cells, suggesting the clinical potential of riluzole-loaded dural substitutes in counteracting the effects of secondary injury in the injured spinal cord.

Zobrazit více v PubMed

Anjum A., Yazid M. D., Fauzi Daud M., Idris J., Ng A. M. H., Selvi Naicker A., Ismail O. H. R., Athi Kumar R. K., Lokanathan Y.. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020;21(20):7533. doi: 10.3390/ijms21207533. PubMed DOI PMC

Lu Y., Shang Z., Zhang W., Pang M., Hu X., Dai Y., Shen R., Wu Y., Liu C., Luo T., Wang X., Liu B., Zhang L., Rong L.. Global Incidence and Characteristics of Spinal Cord Injury since 2000–2021: A Systematic Review and Meta-Analysis. BMC Med. 2024;22(1):285. doi: 10.1186/s12916-024-03514-9. PubMed DOI PMC

Ramakonar H., Fehlings M. G.. Time Is Spine: New Evidence Supports Decompression within 24 h for Acute Spinal Cord Injury. Spinal Cord. 2021;59(8):933–934. doi: 10.1038/s41393-021-00654-0. PubMed DOI PMC

Ishikura H., Ogihara S., Oka H., Maruyama T., Inanami H., Miyoshi K., Matsudaira K., Chikuda H., Azuma S., Kawamura N., Yamakawa K., Hara N., Oshima Y., Morii J., Saita K., Tanaka S., Yamazaki T.. Risk Factors for Incidental Durotomy during Posterior Open Spine Surgery for Degenerative Diseases in Adults: A Multicenter Observational Study. PLoS One. 2017;12(11):e0188038. doi: 10.1371/journal.pone.0188038. PubMed DOI PMC

Wang W., Ao Q.. Research and Application Progress on Dural Substitutes. J. Neurorestoratology. 2019;7(4):161–170. doi: 10.26599/JNR.2019.9040020. DOI

Fishman J. A., Scobie L., Takeuchi Y.. Xenotransplantation-associated Infectious Risk: A WHO Consultation. Xenotransplantation. 2012;19(2):72–81. doi: 10.1111/j.1399-3089.2012.00693.x. PubMed DOI PMC

Khurana D., Suresh A., Nayak R., Shetty M., Sarda R. K., Knowles J. C., Kim H.-W., Singh R. K., Singh B. N.. Biosubstitutes for Dural Closure: Unveiling Research, Application, and Future Prospects of Dura Mater Alternatives. J. Tissue Eng. 2024;15:20417314241228118. doi: 10.1177/20417314241228118. PubMed DOI PMC

MacEwan M. R., Kovacs T., Osbun J., Ray W. Z.. Comparative Analysis of a Fully-Synthetic Nanofabricated Dura Substitute and Bovine Collagen Dura Substitute in a Large Animal Model of Dural Repair. Interdiscip. Neurosurg. 2018;13:145–150. doi: 10.1016/j.inat.2018.05.001. DOI

Azari A., Golchin A., Mahmoodinia Maymand M., Mansouri F., Ardeshirylajimi A.. Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application. Adv. Pharm. Bull. 2021;1:658. doi: 10.34172/apb.2022.070. PubMed DOI PMC

Xie J., MacEwan M. R., Ray W. Z., Liu W., Siewe D. Y., Xia Y.. Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications. ACS Nano. 2010;4(9):5027–5036. doi: 10.1021/nn101554u. PubMed DOI PMC

Schaub N. J., Johnson C. D., Cooper B., Gilbert R. J.. Electrospun Fibers for Spinal Cord Injury Research and Regeneration. J. Neurotrauma. 2016;33(15):1405–1415. doi: 10.1089/neu.2015.4165. PubMed DOI PMC

Evaniew N., Belley-Côté E. P., Fallah N., Noonan V. K., Rivers C. S., Dvorak M. F.. Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Systematic Review and Meta-Analysis. J. Neurotrauma. 2016;33(5):468–481. doi: 10.1089/neu.2015.4192. PubMed DOI PMC

Shi Z., Yuan S., Shi L., Li J., Ning G., Kong X., Feng S.. Programmed Cell Death in Spinal Cord Injury Pathogenesis and Therapy. Cell Prolif. 2021;54(3):e12992. doi: 10.1111/cpr.12992. PubMed DOI PMC

Nagoshi N., Nakashima H., Fehlings M.. Riluzole as a Neuroprotective Drug for Spinal Cord Injury: From Bench to Bedside. Molecules. 2015;20(5):7775–7789. doi: 10.3390/molecules20057775. PubMed DOI PMC

Park E., Velumian A. A., Fehlings M. G.. The Role of Excitotoxicity in Secondary Mechanisms of Spinal Cord Injury: A Review with an Emphasis on the Implications for White Matter Degeneration. J. Neurotrauma. 2004;21(6):754–774. doi: 10.1089/0897715041269641. PubMed DOI

Wu Y., Satkunendrarajah K., Teng Y., Chow D. S.-L., Buttigieg J., Fehlings M. G.. Delayed Post-Injury Administration of Riluzole Is Neuroprotective in a Preclinical Rodent Model of Cervical Spinal Cord Injury. J. Neurotrauma. 2013;30(6):441–452. doi: 10.1089/neu.2012.2622. PubMed DOI PMC

Jayaprakash K., Glasmacher S. A., Pang B., Beswick E., Mehta A. R., Dakin R., Newton J., Chandran S., Pal S.. Riluzole Prescribing, Uptake and Treatment Discontinuation in People with Amyotrophic Lateral Sclerosis in Scotland. J. Neurol. 2020;267(8):2459–2461. doi: 10.1007/s00415-020-09919-9. PubMed DOI PMC

Kellaway S. C., Ullrich M. M., Dziemidowicz K.. Electrospun Drug-loaded Scaffolds for Nervous System Repair. WIREs Nanomed. Nanobiotechnol. 2024;16(3):e1965. doi: 10.1002/wnan.1965. PubMed DOI

Naghibzadeh M., Firoozi S., Nodoushan F. S., Adabi M., Khoradmehr A., Fesahat F., Seyedeh S. E., Khosravani M., Adabi M., Tavakol S., Pazoki-Toroudi H., Adel M., Zahmatkeshan M.. Application of Electrospun Gelatin Nanofibers in Tissue Engineering. Biointerface Res. Appl. Chem. 2018;8(1):3048–3052.

Pertici V., Martrou G., Gigmes D., Trimaille T.. Synthetic Polymer-Based Electrospun Fibers: Biofunctionalization Strategies and Recent Advances in Tissue Engineering, Drug Delivery and Diagnostics. Curr. Med. Chem. 2018;25(20):2385–2400. doi: 10.2174/0929867325666171129133120. PubMed DOI

Dziemidowicz K., Sang Q., Wu J., Zhang Z., Zhou F., Lagaron J. M., Mo X., Parker G. J. M., Yu D.-G., Zhu L.-M., Williams G. R.. Electrospinning for Healthcare: Recent Advancements. J. Mater. Chem. B. 2021;9(4):939–951. doi: 10.1039/D0TB02124E. PubMed DOI

Pant B., Park M., Kim A.. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress. Pharmaceutics. 2023;15(5):1347. doi: 10.3390/pharmaceutics15051347. PubMed DOI PMC

Pant B., Park M., Kim A. A.. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress. Pharmaceutics. 2023;15(5):1347. doi: 10.3390/pharmaceutics15051347. PubMed DOI PMC

Mokhena T. C., Chabalala M. B., Mapukata S., Mtibe A., Hlekelele L., Cele Z., Mochane M. J., Ntsendwana B., Nhlapo T. A., Mokoena T. P., Bambo M. F., Matabola K. P., Ray S. S., Sadiku E. R., Shingange K.. Electrospun PCL-Based Materials for Health-Care Applications: An Overview. Macromol. Mater. Eng. 2024;309(8):2300388. doi: 10.1002/mame.202300388. DOI

Dziemidowicz K., Kellaway S. C., Guillemot-Legris O., Matar O., Trindade R. P., Roberton V. H., Rayner M. L. D., Williams G. R., Phillips J. B.. Development of Ibuprofen-Loaded Electrospun Materials Suitable for Surgical Implantation in Peripheral Nerve Injury. Biomater. Adv. 2023;154:213623. doi: 10.1016/j.bioadv.2023.213623. PubMed DOI

Hu Y., Li J., Liu P., Chen X., Guo D.-H., Li Q.-S., Rahman K.. Protection of SH-SY5Y Neuronal Cells from Glutamate-Induced Apoptosis by 3,6-Disinapoyl Sucrose, a Bioactive Compound Isolated from Radix Polygala. J. Biomed. Biotechnol. 2012;2012:1–5. doi: 10.1155/2012/728342. PubMed DOI PMC

De Oliveira M. R., Duarte A. R., Chenet A. L., De Almeida F. J. S., Andrade C. M. B.. Carnosic Acid Pretreatment Attenuates Mitochondrial Dysfunction in SH-SY5Y Cells in an Experimental Model of Glutamate-Induced Excitotoxicity. Neurotox. Res. 2019;36(3):551–562. doi: 10.1007/s12640-019-00044-8. PubMed DOI

Sun Z.-W., Zhang L., Zhu S.-J., Chen W.-C., Mei B.. Excitotoxicity Effects of Glutamate on Human Neuroblastoma SH-SY5Y Cells via Oxidative Damage. Neurosci. Bull. 2010;26(1):8–16. doi: 10.1007/s12264-010-0813-7. PubMed DOI PMC

Liu D., Xu G.-Y., Pan E., McAdoo D. J.. Neurotoxicity of Glutamate at the Concentration Released upon Spinal Cord Injury. Neuroscience. 1999;93(4):1383–1389. doi: 10.1016/S0306-4522(99)00278-X. PubMed DOI

Mark L. P., Prost R. W., Ulmer J. L., Smith M. M., Daniels D. L., Strottmann J. M., Brown W. D., Hacein-Bey L.. Pictorial Review of Glutamate Excitotoxicity: Fundamental Concepts for Neuroimaging. Am. J. Neuroradiol. 2001;22(10):1813–1824. PubMed PMC

Farooqui, A. A. Potential Neuroprotective Strategies for Experimental Spinal Cord Injury. In Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases; Springer: New York: New York, NY, 2010; pp 151–181.

Rath N., Balain B.. Spinal Cord Injury-The Role of Surgical Treatment for Neurological Improvement. J. Clin. Orthop. Trauma. 2017;8(2):99–102. doi: 10.1016/j.jcot.2017.06.016. PubMed DOI PMC

Chang G., Guo Y., Jia Y., Duan W., Li B., Yu J., Li C.. Protective Effect of Combination of Sulforaphane and Riluzole on Glutamate-Mediated Excitotoxicity. Biol. Pharm. Bull. 2010;33(9):1477–1483. doi: 10.1248/bpb.33.1477. PubMed DOI

Nicholson K. J., Zhang S., Gilliland T. M., Winkelstein B. A.. Riluzole Effects on Behavioral Sensitivity and the Development of Axonal Damage and Spinal Modifications That Occur after Painful Nerve Root Compression: Laboratory Investigation. J. Neurosurg. Spine. 2014;20(6):751–762. doi: 10.3171/2014.2.SPINE13672. PubMed DOI

Hama A., Sagen J.. Antinociceptive Effect of Riluzole in Rats with Neuropathic Spinal Cord Injury Pain. J. Neurotrauma. 2011;28(1):127–134. doi: 10.1089/neu.2010.1539. PubMed DOI

Singh N. K., Khaliq S., Patel M., Wheeler N., Vedula S., Freeman J. W., Firestein B. L.. Uric Acid Released from Poly­(Ε-caprolactone) Fibers as a Treatment Platform for Spinal Cord Injury. J. Tissue Eng. Regen. Med. 2021;15(1):14–23. doi: 10.1002/term.3153. PubMed DOI PMC

Mohtaram N. K., Ko J., Agbay A., Rattray D., Neill P. O., Rajwani A., Vasandani R., Thu H. L., Jun M. B. G., Willerth S. M.. Development of a Glial Cell-Derived Neurotrophic Factor-Releasing Artificial Dura for Neural Tissue Engineering Applications. J. Mater. Chem. B. 2015;3(40):7974–7985. doi: 10.1039/C5TB00871A. PubMed DOI

Masang Ban Bolly H., Faried A., Laurens Jembise T., Fuad Wirakusumah F., Zafrullah Arifin M.. The Ideal Selection Criteria for Duraplasty Material in Brain Surgery: A Review. Interdiscip. Neurosurg. 2020;22:100800. doi: 10.1016/j.inat.2020.100800. DOI

Johnson C. D. L., D’Amato A. R., Gilbert R. J.. Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties. Cells Tissues Organs. 2016;202(1–2):116–135. doi: 10.1159/000446621. PubMed DOI PMC

Zeng J., Xu X., Chen X., Liang Q., Bian X., Yang L., Jing X.. Biodegradable Electrospun Fibers for Drug Delivery. J. Controlled Release. 2003;92(3):227–231. doi: 10.1016/S0168-3659(03)00372-9. PubMed DOI

Dyer A. M., Smith A.. Riluzole 5 Mg/mL Oral Suspension: For Optimized Drug Delivery in Amyotrophic Lateral Sclerosis. Drug Des. Dev. Ther. 2017;11:59–64. doi: 10.2147/DDDT.S123776. PubMed DOI PMC

Yu D.-G., Li J.-J., Williams G. R., Zhao M.. Electrospun Amorphous Solid Dispersions of Poorly Water-Soluble Drugs: A Review. J. Controlled Release. 2018;292:91–110. doi: 10.1016/j.jconrel.2018.08.016. PubMed DOI

Teixeira M. I., Lopes C. M., Gonçalves H., Catita J., Silva A. M., Rodrigues F., Amaral M. H., Costa P. C.. Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the Brain. Pharmaceutics. 2022;14(1):185. doi: 10.3390/pharmaceutics14010185. PubMed DOI PMC

Kim T.-H., Kim S.-C., Park W. S., Choi I.-W., Kim H.-W., Kang H. W., Kim Y.-M., Jung W.-K.. PCL/Gelatin Nanofibers Incorporated with Starfish Polydeoxyribonucleotides for Potential Wound Healing Applications. Mater. Des. 2023;229:111912. doi: 10.1016/j.matdes.2023.111912. DOI

Inês Teixeira M., Lopes C. M., Gonçalves H., Catita J., Margarida Silva A., Rodrigues F., Helena Amaral M., Costa P. C.. Riluzole-Loaded Lipid Nanoparticles for Brain Delivery: Preparation, Optimization and Characterization. J. Mol. Liq. 2023;388:122749. doi: 10.1016/j.molliq.2023.122749. DOI

Wang L., Li S., Tang P., Yan J., Xu K., Li H.. Characterization and Evaluation of Synthetic Riluzole with β-Cyclodextrin and 2,6-Di-O-Methyl-β-Cyclodextrin Inclusion Complexes. Carbohydr. Polym. 2015;129:9–16. doi: 10.1016/j.carbpol.2015.04.046. PubMed DOI

Chiu Y.-J., Zhang Z., Dziemidowicz K., Nikoletopoulos C.-G., Angkawinitwong U., Chen J.-T., Williams G. R.. The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers. Pharmaceutics. 2020;12(2):139. doi: 10.3390/pharmaceutics12020139. PubMed DOI PMC

Volkova T., Simonova O., Perlovich G.. Controlling the Solubility, Release Rate and Permeation of Riluzole with Cyclodextrins. Pharmaceutics. 2024;16(6):757. doi: 10.3390/pharmaceutics16060757. PubMed DOI PMC

Yu D.-G., Li J.-J., Williams G. R., Zhao M.. Electrospun Amorphous Solid Dispersions of Poorly Water-Soluble Drugs: A Review. J. Controlled Release. 2018;292:91–110. doi: 10.1016/j.jconrel.2018.08.016. PubMed DOI

Jana S., Leung M., Chang J., Zhang M.. Effect of Nano- and Micro-Scale Topological Features on Alignment of Muscle Cells and Commitment of Myogenic Differentiation. Biofabrication. 2014;6(3):035012. doi: 10.1088/1758-5082/6/3/035012. PubMed DOI

Mehta P., Al-Kinani A. A., Haj-Ahmad R., Arshad M. S., Chang M.-W., Alany R. G., Ahmad Z.. Electrically Atomised Formulations of Timolol Maleate for Direct and On-Demand Ocular Lens Coatings. Eur. J. Pharm. Biopharm. 2017;119:170–184. doi: 10.1016/j.ejpb.2017.06.016. PubMed DOI

Ravichandran S., Radhakrishnan J., Nandhiraman V., Mariappan M.. Ruthenium Complex Infused Polycaprolactone (PCL-Ru) Nanofibers and Their in Vitro Anticancer Activity against Human Tested Cancer Cell Lines. Results Chem. 2022;4:100380. doi: 10.1016/j.rechem.2022.100380. DOI

Dias J. R., Sousa A., Augusto A., Bártolo P. J., Granja P. L.. Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study. Polymers. 2022;14(16):3397. doi: 10.3390/polym14163397. PubMed DOI PMC

Wu Y., Satkunendrarajah K., Teng Y., Chow D. S.-L., Buttigieg J., Fehlings M. G.. Delayed Post-Injury Administration of Riluzole Is Neuroprotective in a Preclinical Rodent Model of Cervical Spinal Cord Injury. J. Neurotrauma. 2013;30(6):441–452. doi: 10.1089/neu.2012.2622. PubMed DOI PMC

Wu Q., Zhang W., Yuan S., Zhang Y., Zhang W., Zhang Y., Chen X., Zang L.. A Single Administration of Riluzole Applied Acutely After Spinal Cord Injury Attenuates Pro-Inflammatory Activity and Improves Long-Term Functional Recovery in Rats. J. Mol. Neurosci. 2022;72(4):730–740. doi: 10.1007/s12031-021-01947-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...