Migrating hoverflies as potential food source for co-migrating insectivorous birds
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40420850
PubMed Central
PMC12105790
DOI
10.1098/rsos.241743
PII: rsos241743
Knihovny.cz E-zdroje
- Klíčová slova
- Diptera, Syrphidae, co-migration, mountain barrier, predator, prey,
- Publikační typ
- časopisecké články MeSH
Most migrating birds must replenish energy reserves during migration. Food availability significantly influences migratory routes and can even force migrants to detour, but still little is known about potential co-migration between insectivorous birds and their insect prey. To address this gap, we focused on day-flying insects and the insectivorous birds migrating through the Červenohorské sedlo mountain pass, Czech Republic. During four seasons of insect and bird trapping, using Malaise trap and mist-nets, respectively, we recorded 23 094 birds of 80 species and 35 087 migrating hoverflies (Syrphidae) of 47 species. We found a strong temporal correlation between the number of migrating hoverflies and insectivorous birds crossing the mountain pass. The observed pattern suggests that a similar phenomenon may occur in lowlands, where both groups stop over before and after crossing the mountains. These stopovers may provide migratory birds with abundant and reliable food resources. We also found that hoverflies comprised 88% of the biomass of all trapped insects, making them the most abundant potential prey of migrating birds. Our results outline the co-migration of birds and hoverflies and shed light on possible predator-prey dynamics during migration.
Zobrazit více v PubMed
Lundmark C. 2010. Long-distance insect migration. BioScience 60 , 400–400. (10.1525/bio.2010.60.5.15) DOI
Dokter AM, Farnsworth A, Fink D, Ruiz-Gutierrez V, Hochachka WM, La Sorte FA, Robinson OJ, Rosenberg KV, Kelling S. 2018. Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nat. Ecol. Evol. 2 , 1603–1609. (10.1038/s41559-018-0666-4) PubMed DOI
Van Doren BM, Horton KG. 2018. A continental system for forecasting bird migration. Science 361 , 1115–1118. (10.1126/science.aat7526) PubMed DOI
Wright RM, et al. . 2022. First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea. Sci. Rep. 12 , 15362. (10.1038/s41598-022-19248-8) PubMed DOI PMC
Williams CB. 1957. Insect migration. Annu. Rev. Entomol. 2 , 163–180. (10.1146/annurev.en.02.010157.001115) DOI
Dingle H, Drake VA. 2007. What is migration? BioScience 57 , 113–121. (10.1641/b570206) DOI
Aralimarad P, Reynolds AM, Lim KS, Reynolds DR, Chapman JW. 2011. Flight altitude selection increases orientation performance in high-flying nocturnal insect migrants. Anim. Behav. 82 , 1221–1225. (10.1016/j.anbehav.2011.09.013) DOI
Bell JR, Aralimarad P, Lim KS, Chapman JW. 2013. Predicting insect migration density and speed in the daytime convective boundary layer. PLoS ONE 8 , e54202. (10.1371/journal.pone.0054202) PubMed DOI PMC
Cohen EB, Satterfield DA. 2020. Chancing on a spectacle: co‐occurring animal migrations and interspecific interactions. Ecography 43 , 1657–1671. (10.1111/ecog.04958) DOI
Furey NB, Armstrong JB, Beauchamp DA, Hinch SG. 2018. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2 , 1846–1853. (10.1038/s41559-018-0711-3) PubMed DOI
Hawkes WL, Davies K, Weston S, Moyes K, Chapman JW, Wotton KR. 2023. Bat activity correlated with migratory insect bioflows in the Pyrenees. R. Soc. Open Sci. 10 , 230151. (10.1098/rsos.230151) PubMed DOI PMC
La Sorte FA, Fink D, Hochachka WM, DeLong JP, Kelling S. 2014. Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds. Proc. R. Soc. B 281 , 20140984. (10.1098/rspb.2014.0984) PubMed DOI PMC
Thorup K, et al. . 2017. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3 , e1601360. (10.1126/sciadv.1601360) PubMed DOI PMC
Hadjikyriakou TG, Nwankwo EC, Virani MZ, Kirschel ANG. 2020. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8 , 10. (10.1186/s40462-020-0190-4) PubMed DOI PMC
Schaub M, Jenni L. 2000. Fuel deposition of three passerine bird species along the migration route. Oecologia 122 , 306–317. (10.1007/s004420050036) PubMed DOI
Vincze O, Vágási CI, Pap PL, Palmer C, Møller AP. 2019. Wing morphology, flight type and migration distance predict accumulated fuel load in birds. J. Exp. Biol. 222 , b183517. (10.1242/jeb.183517) PubMed DOI
Briedis M, et al. . 2020. Broad‐scale patterns of the Afro‐Palaearctic landbird migration. Glob. Ecol. Biogeogr. 29 , 722–735. (10.1111/geb.13063) DOI
Alerstam T, Lindström Å. 1990. Optimal bird migration: the relative importance of time, energy, and safety. In Bird migration (ed. Gwinner E), pp. 331–351. Berlin, Germany: Springer. (10.1007/978-3-642-74542-3_22) DOI
Alerstam T. 2011. Optimal bird migration revisited. J. Ornithol. 152 , 5–23. (10.1007/s10336-011-0694-1) DOI
Schmaljohann H, Eikenaar C, Sapir N. 2022. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol. Rev. 97 , 1231–1252. (10.1111/brv.12839) PubMed DOI
Wang X, Ma H, Wu Q, Zhou Y, Zhou L, Xiu X, Zhao Y, Wu K. 2023. Comigration and interactions between two species of rice planthopper (Laodelphax striatellus and Sogatella furcifera) and natural enemies in eastern Asia. Pest Manag. Sci. 79 , 4066–4077. (10.1002/ps.7603) PubMed DOI
Strandberg R, Alerstam T. 2007. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61 , 1865–1875. (10.1007/s00265-007-0426-y) DOI
Imlay TL, Saldanha S, Taylor PD. 2020. The fall migratory movements of bank swallows, Riparia riparia: fly-and-forage migration? Avian Conserv. Ecol 15 , 2. (10.5751/ace-01463-150102) DOI
Wotton KR, Gao B, Menz MHM, Morris RKA, Ball SG, Lim KS, Reynolds DR, Hu G, Chapman JW. 2019. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 29 , 2167–2173.(10.1016/j.cub.2019.05.036) PubMed DOI
Hawkes WLS, et al. . 2022. Huge spring migrations of insects from the Middle East to Europe: quantifying the migratory assemblage and ecosystem services. Ecography 2022 , e06288. (10.1111/ecog.06288) DOI
Gilbert F. 2019. Migration: ecosystem services helicoptered in. Curr. Biol. 29 , R697–R699. (10.1016/j.cub.2019.06.013) PubMed DOI
Doyle T, Hawkes WLS, Massy R, Powney GD, Menz MHM, Wotton KR. 2020. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287 , 20200508. (10.1098/rspb.2020.0508) PubMed DOI PMC
Cuthill I, Bennett A. 1993. Mimicry and the eye of the beholder. Proc. R. Soc. B 253 , 203–204. (10.1098/rspb.1993.0103) DOI
Golding Y, Edmunds M. 2000. Behavioural mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.). Proc. R. Soc. Lond. B 267 , 903–909. (10.1098/rspb.2000.1088) PubMed DOI PMC
Hlaváček A, Daňková K, Benda D, Bogusch P, Hadrava J. 2022. Batesian-Müllerian mimicry ring around the oriental hornet (Vespa orientalis). J. Hymenopt. Res. 92 , 211–228. (10.3897/jhr.92.81380) DOI
Grim T. 2006. An exceptionally high diversity of hoverflies (Syrphidae) in the food of the reed warbler (Acrocephalus scirpaceus). Biologia 61 , 235–239. (10.2478/s11756-006-0036-6) DOI
Wiesenborn WD, Heydon SL. 2007. Diets of breeding southwestern willow flycatchers in different habitats. Wilson J. Ornithol. 119 , 547–557. (10.1676/06-101.1) DOI
Bryant DM. 1973. The factors influencing the selection of food by the house martin (Delichon urbica (L.)). J. Anim. Ecol. 42 , 539. (10.2307/3123) DOI
Krištín A. 1991. Feeding of some polyphagous songbirds on Syrphidae, Coccinellidae and aphids in beech–oak forests. In Behavioural and impact of aphidophaga (eds Dixon R, Hodek A), pp. 183–186. Hague, The Netherlands: Academic Publishing.
Hlaváček A, Lučan RK, Hadrava J. 2022. Autumnal migration patterns of hoverflies (Diptera: Syrphidae): interannual variability in timing and sex ratio. PeerJ 10 , e14393. (10.7717/peerj.14393) PubMed DOI PMC
Vavřík M, Zicha F, Belfín O, Koukolíková A, Lučan R, Lučan K. 2016. Podzimní tah ptáků přes Červenohorské sedlo. Autumn bird migration over the Červenohorské sedlo mountain pass. Zprávy MOS 74 , 4–73.
Hallmann CA, et al. . 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12 , e0185809. (10.1371/journal.pone.0185809) PubMed DOI PMC
Bot S, Van de Meutter F. 2023. Hoverflies of Britain and north-west Europe: a photographic guide, 1st edn. London, UK: Bloomsbury Publishing.
Hippa H, Nielsen T, van Steenis J. 2001. The West Palaearctic species of the genus Eristalis latreille (Diptera, Syrphidae). Nor. J. Entomol. 48 , 289–327.
Láska P, Mazánek L, Bičík V. 2013. Key to adults and larvae of the genera of European Syrphinae (Diptera, Syrphidae). Slez. Sborník 62 , 193–206. (10.2478/cszma-2013-0021) DOI
Busse P, Meissner W. 2015. Bird ringing station manual. Berlin, Germany: De Gruyter. (10.2478/9788376560533) DOI
Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York, NY: Springer. (10.1007/978-0-387-21706-2) DOI
Fox J, et al. . 2023. car: companion to applied regression. See https://r-forge.r-project.org/projects/car/, https://CRAN.R-project.org/package=car, https://www.john-fox.ca/Companion/index.html.
Neter J, Kutner M, Nachtsheim C, Wasserman W. 2005. Applied linear statistical models, 5th edn. Boston, MA: McGraw-Hill Irwin.
Lüdecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D. 2021. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6 , 3139. (10.21105/joss.03139) DOI
Storchová L, Hořák D. 2018. Life‐history characteristics of European birds. Glob. Ecol. Biogeogr. 27 , 400–406. (10.1111/geb.12709) DOI
Hawkes WL, Menz MHM, Wotton KR. 2024. Lords of the flies: dipteran migrants are diverse, abundant and ecologically important. bioRxiv. (10.1101/2024.03.04.583324) PubMed DOI
Eimer T. 1882. Über eine Wanderun von Dipteren und Libellen. Entomol Ztg Stettin 260.
Beebe W. 1951. Migration of insects (other than Lepidoptera) through Portachuelo Pass, Rancho Grande, north-central Venezuela. Zoologica 36 , 255–266. (10.5962/p.203488) DOI
Lack E. 1951. Migration of insects and birds through a Pyrenean oass. J. Anim. Ecol. 20 , 63. (10.2307/1644) DOI
Schmaljohann H, Liechti F, Bruderer B. 2007. Songbird migration across the Sahara: the non-stop hypothesis rejected! Proc. R. Soc. B 274 , 735–739. (10.1098/rspb.2006.0011) PubMed DOI PMC
Odermatt J, Frommen JG, Menz MHM. 2017. Consistent behavioural differences between migratory and resident hoverflies. Anim. Behav. 127 , 187–195. (10.1016/j.anbehav.2017.03.015) DOI
Hawkes WL, et al. . 2024. The most remarkable migrants—systematic analysis of the Western European insect flyway at a Pyrenean mountain pass. Proc. R. Soc. B 291 , 20232831. (10.1098/rspb.2023.2831) PubMed DOI PMC
Hallmann CA, Ssymank A, Sorg M, de Kroon H, Jongejans E. 2021. Insect biomass decline scaled to species diversity: general patterns derived from a hoverfly community. Proc. Natl Acad. Sci. USA 118 , e2002554117. (10.1073/pnas.2002554117) PubMed DOI PMC
Aubert J, Tiefenaou P. 1976. Douze ans de captures systematiques de Syrphides (Diptères) au col de Bretolet (Alpes valaisannes).
Aubert J, Jaccard M. 1981. Migration of hover flies (Syrphidae, Diptera) in the Jura Vaudois area. Mitteilungen Schweiz Entomol. Ges. Bull. Soc. Entomol. Suisse.
Gatter W. 1976. Der Zug der Schwebfliegen nach planmäßigen Fängen am Randecker Maar (Schwäbische Alb) (Dip. Syrphidae). Atalanta 7 , 4–18.
Gatter W, Schmid U. 1990. The migration of hoverflies at Randecker Maar. Spixiana 1–100.
Vujić A, et al. . 2023. Pollinators on the edge: our European hoverflies: the European Red List of hoverflies. Brussels, Belgium: Publications Office of the European Union.
Nisbet ICT, Drury WH. 1968. Short-term effects of weather on bird migration: a field study using multivariate statistics. Anim. Behav. 16 , 496–530. (10.1016/0003-3472(68)90046-8) DOI
Haest B, Hüppop O, van de Pol M, Bairlein F. 2019. Autumn bird migration phenology: a potpourri of wind, precipitation and temperature effects. Glob. Chang. Biol. 25 , 4064–4080. (10.1111/gcb.14746) PubMed DOI
Chapman BB, Brönmark C, Nilsson J, Hansson L. 2011. The ecology and evolution of partial migration. Oikos 120 , 1764–1775. (10.1111/j.1600-0706.2011.20131.x) DOI
Gao B, Wotton KR, Hawkes WLS, Menz MHM, Reynolds DR, Zhai BP, Hu G, Chapman JW. 2020. Adaptive strategies of high-flying migratory hoverflies in response to wind currents. Proc. R. Soc. B 287 , 20200406. (10.1098/rspb.2020.0406) PubMed DOI PMC
Malaise R. 1937. A new insect-trap. Entomol. Tidskr. 58 , 148–160.
Matthews RW, Matthews JR. 2017. The Malaise trap: its utility and potential for sampling insect populations. Great Lakes Entomol. 4 , 4. (10.22543/0090-0222.1158) DOI
Burgio G, Sommaggio D. 2007. Syrphids as landscape bioindicators in Italian agroecosystems. Agric. Ecosyst. Environ. 120 , 416–422. (10.1016/j.agee.2006.10.021) DOI
Campbell JW, Hanula JL. 2007. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11 , 399–408. (10.1007/s10841-006-9055-4) DOI
Brattström O, Shapoval A, Wassenaar LI, Hobson KA, Åkesson S. 2018. Geographic origin and migration phenology of European red admirals (Vanessa atalanta) as revealed by stable isotopes. Mov. Ecol. 6 , 25. (10.1186/s40462-018-0143-3) PubMed DOI PMC
Knoblauch A, Thoma M, Menz MHM. 2021. Autumn southward migration of dragonflies along the Baltic coast and the influence of weather on flight behaviour. Anim. Behav. 176 , 99–109. (10.1016/j.anbehav.2021.04.003) DOI
Barta Z, McNamara JM, Houston AI, Weber TP, Hedenström A, Feró O. 2008. Optimal moult strategies in migratory birds. Phil. Trans. R. Soc. B 363 , 211–229. (10.1098/rstb.2007.2136) PubMed DOI PMC
Marra PP, Francis CM, Mulvihill RS, Moore FR. 2005. The influence of climate on the timing and rate of spring bird migration. Oecologia 142 , 307–315. (10.1007/s00442-004-1725-x) PubMed DOI
Kumar V, Wingfield JC, Dawson A, Ramenofsky M, Rani S, Bartell P. 2010. Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol. Biochem. Zool. 83 , 827–835. (10.1086/652243) PubMed DOI
Reynolds SK, Clem CS, Fitz‐Gerald B, Young AD. 2024. A comprehensive review of long‐distance hover fly migration (Diptera: Syrphidae). Ecol. Entomol. 49 , 749–767. (10.1111/een.13373) DOI
Massy R, Hawkes WLS, Doyle T, Troscianko J, Menz MHM, Roberts NW, Chapman JW, Wotton KR. 2021. Hoverflies use a time-compensated sun compass to orientate during autumn migration. Proc. R. Soc. B 288 , 20211805. (10.1098/rspb.2021.1805) PubMed DOI PMC
Schaub M, Jenni L. 1999. Does tape-luring of migrating Eurasian reed-warblers increase number of recruits or capture probability? Auk 116 , 1047–1053. (10.2307/4089684) DOI
Wojczulanis-Jakubas K, Wietrzykowski J, Jakubas D. 2016. Response of reed warbler and sedge warbler to acoustic playback in relation to age, sex, and body condition. J. Ornithol. 157 , 137–143. (10.1007/s10336-015-1260-z) DOI
Hlaváček A, Mikula P, Hadrava J, Lucan R. 2025. Supplementary material from: Migrating hoverflies as potential food source for co-migrating insectivorous birds. FigShare (10.6084/m9.figshare.c.7687065) PubMed DOI PMC
Migrating hoverflies as potential food source for co-migrating insectivorous birds
figshare
10.6084/m9.figshare.c.7687065