Key Ferroptosis Genes and their Predictive and Diagnostic Value in Fanconi Anemia

. 2025 Apr 30 ; 74 (2) : 275-285.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40432442

Fanconi anemia (FA) and ferroptosis both affect tumor-related processes. However, few studies have reported on genetic associations between FA and ferroptosis. Our study evaluated the usefulness of genes related to ferroptosis in predicting and diagnosing FA. Transcriptome sequencing data were collected from 11 normal participants and 21 patients with FA. Differential gene analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) analysis, gene correlation analysis, protein-protein interaction network analysis, qRT-PCR, and pan-cancer analysis were performed. The pan-cancer analysis was carried out based on data obtained from the GTEx and TCGA databases. Two hundred ninety-eight differentially expressed genes were detected based on the comparison of FA patients and normal participants, among which four critical non-FA genes, MAD2L1, ASPM, PCNA, and TOP2A, were identified. Among the ferroptosis-related genes, five genes, including CDKN1A, EMC2, FDFT1, HSPB1, and MT1G, were identified as being associated with FA, and the areas under the curve (AUC) of these five ferroptosis-related genes were 0.907, 0.640, 0.902, 0.840, and 0.929, respectively. The AUC for the diagnosis of FA reached 1.000 when the five ferroptosis-related genes were used in combination. In addition, the expressions of CDKN1A, EMC2, FDFT1, and HSPB1 were associated with the prognosis of multiple cancers (P<0.05). The five ferroptosis-related genes CDKN1A, EMC2, FDFT1, HSPB1, and MT1G exhibited excellent predictive effects for the diagnosis of FA.

Zobrazit více v PubMed

Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nature reviews Molecular cell biology. 2016;17:337–349. doi: 10.1038/nrm.2016.48. PubMed DOI

Río P, Navarro S, Bueren JA. Advances in gene therapy for Fanconi Anemia. Hum Gene Ther. 2018;29:1114–1123. doi: 10.1089/hum.2018.124. PubMed DOI

Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi anemia signaling and cancer. Trends Cancer. 2017;3:840–856. doi: 10.1016/j.trecan.2017.10.005. PubMed DOI PMC

Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103:30–39. doi: 10.3324/haematol.2017.178111. PubMed DOI PMC

Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature. 2012;489:571–575. doi: 10.1038/nature11368. PubMed DOI

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell death and differentiation. 2016;23:369–379. doi: 10.1038/cdd.2015.158. PubMed DOI PMC

Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nature reviews Clinical oncology. 2021;18:280–296. doi: 10.1038/s41571-020-00462-0. PubMed DOI

Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nature reviews Cancer. 2018;18:168–185. doi: 10.1038/nrc.2017.116. PubMed DOI

Tsui V, Crismani W. The Fanconi anemia pathway and fertility. Trends in genetics: TIG. 2019;35:199–214. doi: 10.1016/j.tig.2018.12.007. PubMed DOI

Shen X, Wang R, Kim MJ, Hu Q, Hsu CC, Yao J, Klages-Mundt N, Tian Y, Lynn E, Brewer TF, Zhang Y, Arun B, Gan B, Andreeff M, Takeda S, Chen J, Park JI, Shi X, Chang CJ, Jung SY, Qin J, Li L. A surge of DNA damage links transcriptional reprogramming and hematopoietic deficit in fanconi anemia. Mol Cell. 2020;80:1013–1024.e1016. doi: 10.1016/j.molcel.2020.11.040. PubMed DOI PMC

Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS, Tang D. FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Com. 2016;480:443–449. doi: 10.1016/j.bbrc.2016.10.068. PubMed DOI PMC

Liu Z, Zhao Q, Zuo ZX, Yuan SQ, Yu K, Zhang Q, Zhang X, Sheng H, Ju HQ, Cheng H, Wang F, Xu RH, Liu ZX. Systematic analysis of the aberrances and functional implications of ferroptosis in cancer. iScience. 2020;23:101302. doi: 10.1016/j.isci.2020.101302. PubMed DOI PMC

Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158:929–944. doi: 10.1016/j.cell.2014.06.049. PubMed DOI PMC

Koh YW, Han JH, Haam S, Jung J, Lee HW. Increased CMTM6 can predict the clinical response to PD-1 inhibitors in non-small cell lung cancer patients. Oncoimmunol. 2019;8:e1629261. doi: 10.1080/2162402X.2019.1629261. PubMed DOI PMC

Yi L, Wu G, Guo L, Zou X, Huang P. Comprehensive analysis of the PD-L1 and immune infiltrates of m(6)A RNA methylation regulators in head and neck squamous cell carcinoma. Molecular therapy Nucleic acids. 2020;21:299–314. doi: 10.1016/j.omtn.2020.06.001. PubMed DOI PMC

Alter BP. Fanconi anemia and the development of leukemia. Best Practice & Res Clin Haematol. 2014;27:214–221. doi: 10.1016/j.beha.2014.10.002. PubMed DOI PMC

García-de-Teresa B, Rodríguez A, Frias S. Chromosome instability in Fanconi anemia: from breaks to phenotypic consequences. Genes. 2020;11:1528. doi: 10.3390/genes11121528. PubMed DOI PMC

Auerbach AD. Fanconi anemia and its diagnosis. Mutation Res. 2009;668:4–10. doi: 10.1016/j.mrfmmm.2009.01.013. PubMed DOI PMC

Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood reviews. 2010;24:101–122. doi: 10.1016/j.blre.2010.03.002. PubMed DOI PMC

Ruggiero JL, Dodds M, Freese R, Polcari IC, Maguiness S, Hook KP, Boull C. Cutaneous findings in Fanconi anemia. Journal of the American Academy of Dermatology. 2021;85:1253–1258. doi: 10.1016/j.jaad.2020.08.047. PubMed DOI PMC

Rochowski A, Rosenberg PS, Alonzo TA, Gerbing RB, Lange BJ, Alter BP. Estimation of the prevalence of Fanconi anemia among patients with de novo acute myelogenous leukemia who have poor recovery from chemotherapy. Leukemia research. 2012;36(1):29–31. doi: 10.1016/j.leukres.2011.09.009. PubMed DOI PMC

Huck K, Hanenberg H, Gudowius S, Fenk R, Kalb R, Neveling K, Betz B, Niederacher D, Haas R, Göbel U, Kobbe G, Schindler D. Delayed diagnosis and complications of Fanconi anaemia at advanced age--a paradigm. Brit J Haematol. 2006;133:188–197. doi: 10.1111/j.1365-2141.2006.05998.x. PubMed DOI

Chandrasekharappa SC, Lach FP, Kimble DC, Kamat A, Teer JK, Donovan FX, Flynn E, Sen SK, Thongthip S, Sanborn E, Smogorzewska A, Auerbach AD, Ostrander EA. Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood. 2013;121:e138–148. doi: 10.1182/blood-2012-12-474585. PubMed DOI PMC

Kee Y, D’Andrea AD. Molecular pathogenesis and clinical management of Fanconi anemia. The Journal of clinical investigation. 2012;122:3799–3806. doi: 10.1172/JCI58321. PubMed DOI PMC

Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, Pla M, Vasquez N, Zhang QS, Pondarre C, Peffault de Latour R, Gluckman E, Cavazzana-Calvo M, Leblanc T, Larghero J, Grompe M, Socié G, D’Andrea AD, Soulier J. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell stem cell. 2012;11:36–49. doi: 10.1016/j.stem.2012.05.013. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...