Protective Effects of Panax notoginseng Saponins on Cerebral Ischemia/Reperfusion Injury: Insights Into SIRT1/NRF2/HO-1 Pathway Activation
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
    PubMed
          
           40432445
           
          
          
    PubMed Central
          
           PMC12148123
           
          
          
    DOI
          
           10.33549/physiolres.935458
           
          
          
      PII:  935458
  
    Knihovny.cz E-zdroje
    
  
              
      
- MeSH
- faktor 2 související s NF-E2 * metabolismus MeSH
- hemová oxygenasa (decyklizující) MeSH
- infarkt arteria cerebri media farmakoterapie patologie MeSH
- ischemie mozku * metabolismus patologie farmakoterapie MeSH
- krysa rodu Rattus MeSH
- neuroprotektivní látky * farmakologie terapeutické užití MeSH
- Panax notoginseng * chemie MeSH
- potkani Sprague-Dawley MeSH
- reperfuzní poškození * metabolismus prevence a kontrola patologie farmakoterapie MeSH
- saponiny * farmakologie terapeutické užití izolace a purifikace MeSH
- signální transdukce účinky léků MeSH
- sirtuin 1 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 2 související s NF-E2 * MeSH
- hemová oxygenasa (decyklizující) MeSH
- Hmox1 protein, rat MeSH Prohlížeč
- neuroprotektivní látky * MeSH
- Nfe2l2 protein, rat MeSH Prohlížeč
- saponiny * MeSH
- Sirt1 protein, rat MeSH Prohlížeč
- sirtuin 1 * MeSH
Stroke and cerebral ischemia/reperfusion (IR) injury are severe conditions characterized by impaired blood flow to the brain, leading to tissue infarction and neurological impairments. Panax notoginseng saponins (PNS) have displayed various beneficial effects in alleviating cerebrovascular disorders. This study aimed to investigate the neuroprotective capacity of PNS in a rat model of middle cerebral artery occlusion (MCAO)-induced cerebral IR injury, focusing specifically on understanding the involvement of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in mediating this protective effect. Male Sprague-Dawley rats (n=45, weighing 250-280g and aged 12 weeks) were utilized in this experiment. Cerebral IR injury was induced by subjecting the rats to 30 minutes of MCAO followed by 24 hours of reperfusion. Prior to the surgery, PNS (120mg/kg) was administered once daily via gavage for 14 days. The evaluation measures included assessing cerebral infarct volume, neurological function using the Longa method, conducting histopathological analysis, examining the expression of SIRT1, Nrf2, and HO-1 genes and proteins, as well as measuring the levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA). Pretreatment with PNS markedly decreased infarct volume, enhanced neurological function, and mitigated histopathological alterations. Additionally, PNS intake resulted in the upregulation of SIRT1, Nrf2, and HO-1 genes and proteins, boosted enzymatic antioxidant activity, and lowered MDA levels, pointing towards a diminution in oxidative stress. The multifaceted antioxidant and neuroprotective properties of PNS underscore its promising role in preserving neuronal function, mitigating oxidative damage, and promoting tissue survival in ischemic conditions. These benefits were associated with the modulation of the SIRT1/Nrf2/HO-1 signaling pathway, emphasizing the therapeutic significance of PNS in addressing cerebral IR injury and related neurological complications. Key words: Ischemia/reperfusion injury, Neuroprotection, Oxidative stress, Panax notoginseng saponins, Stroke.
Zobrazit více v PubMed
Cowled P, Fitridge R. Pathophysiology of reperfusion injury. Mechanisms of Vascular Disease: A Textbook for Vascular Specialists. 2020:415–40. doi: 10.1007/978-3-030-43683-4_18. DOI
Lin L, Wang X, Yu Z. Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochemistry & pharmacology: open access. 2016;5(4) doi: 10.4172/2167-0501.1000213. PubMed DOI PMC
Kapanova G, Tashenova G, Akhenbekova A, Tokpınar A, Yılmaz S. Cerebral ischemia reperfusion injury: from public health perspectives to mechanisms. Folia Neuropathologica. 2022;60(4):384–9. doi: 10.5114/fn.2022.120101. PubMed DOI
Li M, Tang H, Li Z, Tang W. Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience. 2022;507:112–24. doi: 10.1016/j.neuroscience.2022.10.020. PubMed DOI
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. International journal of molecular sciences. 2020;21(20):7609. doi: 10.3390/ijms21207609. PubMed DOI PMC
Grotta JC, Albers GW, Broderick JP, Kasner SE, Lo EH, Sacco RL, et al. Stroke: pathophysiology, diagnosis, and management. Elsevier Health Sciences; 2021.
Zhang Q, Jia M, Wang Y, Wang Q, Wu J. Cell death mechanisms in cerebral ischemia-reperfusion injury. Neurochemical research. 2022;47(12):3525–42. doi: 10.1007/s11064-022-03697-8. PubMed DOI
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Frontiers in molecular neuroscience. 2020;13:28. doi: 10.3389/fnmol.2020.00028. PubMed DOI PMC
Mei Z, Du L, Liu X, Chen X, Tian H, Deng Y, et al. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food & Function. 2022;13(1):198–212. doi: 10.1039/D1FO02579A. PubMed DOI
Yang R, Shen Y-J, Chen M, Zhao J-Y, Chen S-H, Zhang W, et al. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. Journal of Asian Natural Products Research. 2022;24(3):278–89. doi: 10.1080/10286020.2021.1949302. PubMed DOI
Han J, Liu X, Li Y, Zhang J, Yu H. Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through anti-oxidative stress induced by miRNA-23b-3p expression. Molecular Medicine Reports. 2018;17(6):8414–22. doi: 10.3892/mmr.2018.8876. PubMed DOI
Zheng Y, Li L, Chen B, Fang Y, Lin W, Zhang T, et al. Chlorogenic acid exerts neuroprotective effect against hypoxia-ischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2-NF-κB signaling pathway. Cell Communication and Signaling. 2022;20(1):84. doi: 10.1186/s12964-022-00860-0. PubMed DOI PMC
Xue F, Huang J-w, Ding P-y, Zang H-g, Kou Z-j, Li T, et al. Nrf2/antioxidant defense pathway is involved in the neuroprotective effects of Sirt1 against focal cerebral ischemia in rats after hyperbaric oxygen preconditioning. Behavioural brain research. 2016;309:1–8. doi: 10.1016/j.bbr.2016.04.045. PubMed DOI
Sastry KS, Mandal B, Hammond J, Scott SW, Briddon RW. Panax notoginseng (Notoginseng or Sanqi) Encyclopedia of Plant Viruses and Viroids: Springer. 2020:1712–3. doi: 10.1007/978-81-322-3912-3_651. DOI
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, et al. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. Journal of Ethnopharmacology. 2019;236:443–65. doi: 10.1016/j.jep.2019.02.035. PubMed DOI
Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. Annals of translational medicine. 2020;8(22) doi: 10.21037/atm-20-6909. PubMed DOI PMC
Zhou N, Tang Y, Keep RF, Ma X, Xiang J. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine. 2014;21(10):1189–95. doi: 10.1016/j.phymed.2014.05.004. PubMed DOI PMC
Yang X, Xiong X, Wang H, Wang J. Protective effects of panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evidence-Based Complementary and Alternative Medicine. 2014:2014. doi: 10.1155/2014/204840. PubMed DOI PMC
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng saponins for treating coronary artery disease: a functional and mechanistic overview. Frontiers in Pharmacology. 2017;8:702. doi: 10.3389/fphar.2017.00702. PubMed DOI PMC
Uzayisenga R, Ayeka PA, Wang Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): a review. Phytotherapy Research. 2014;28(4):510–6. doi: 10.1002/ptr.5026. PubMed DOI
Yao L-C, Wu L, Wang W, Zhai L-L, Ye L, Xiang F, et al. Panax notoginseng saponins promote cell death and chemosensitivity in pancreatic cancer through the apoptosis and autophagy pathways. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2021;21(13):1680–8. doi: 10.2174/1871520620999201110191459. PubMed DOI
Yang Q, Wang P, Cui J, Wang W, Chen Y, Zhang T. Panax notoginseng saponins attenuate lung cancer growth in part through modulating the level of Met/miR-222 axis. Journal of ethnopharmacology. 2016;193:255–65. doi: 10.1016/j.jep.2016.08.040. PubMed DOI
Ling C, Man-Yun C, Li S, Zhang W, Tai R, Hong-Hao Z, et al. Panax notoginseng saponins prevent colitis-associated colorectal cancer development: the role of gut microbiota. Chinese journal of natural medicines. 2020;18(7):500–7. doi: 10.1016/S1875-5364(20)30060-1. PubMed DOI
Shi X, Yu W, Yang T, Liu W, Zhao Y, Sun Y, et al. Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo. Journal of ethnopharmacology. 2016;190:301–12. doi: 10.1016/j.jep.2016.06.017. PubMed DOI
Huang J-L, Jing X, Tian X, Qin M-C, Xu Z-H, Wu D-P, et al. Neuroprotective properties of Panax notoginseng saponins via preventing oxidative stress injury in SAMP8 mice. Evidence-Based Complementary and Alternative Medicine. 2017:2017. doi: 10.1155/2017/8713561. PubMed DOI PMC
Wang Q-H, Kuang N, Hu W-y, Yin D, Wei Y-Y, Hu T-J. The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies. Journal of Veterinary Science. 2020;21(4) doi: 10.4142/jvs.2020.21.e61. PubMed DOI PMC
Zheng Y-r, Fan C-l, Chen Y, Quan J-y, Shi L-z, Tian C-y, et al. Anti-inflammatory, anti-angiogenetic and antiviral activities of dammarane-type triterpenoid saponins from the roots of Panax notoginseng. Food & Function. 2022;13(6):3590–602. doi: 10.1039/D1FO04089H. PubMed DOI
Luo H, Vong CT, Tan D, Zhang J, Yu H, Yang L, et al. Panax notoginseng saponins modulate the inflammatory response and improve IBD-like symptoms via TLR/NF-κB and MAPK signaling pathways. The American Journal of Chinese Medicine. 2021;49(04):925–39. doi: 10.1142/S0192415X21500440. PubMed DOI
Zhang H, Li J, Diao M, Li J, Xie N. Production and Pharmaceutical Research of Minor Saponins in Panax Notoginseng (Sanqi): Current Status and Future Prospects. Phytochemistry. 2024:114099. doi: 10.1016/j.phytochem.2024.114099. PubMed DOI
Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng saponins stimulates neurogenesis and neurological restoration after microsphere-induced cerebral embolism in rats partially via mTOR signaling. Frontiers in Pharmacology. 2022;13:889404. doi: 10.3389/fphar.2022.889404. PubMed DOI PMC
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. stroke. 1989;20(1):84–91. doi: 10.1161/01.STR.20.1.84. PubMed DOI
Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opinion on Investigational Drugs. 2014;23(4):523–39. doi: 10.1517/13543784.2014.892582. PubMed DOI
Sun T, Wang P, Deng T, Tao X, Li B, Xu Y. Effect of panax notoginseng saponins on focal cerebral ischemia-reperfusion in rat models: a meta-analysis. Frontiers in Pharmacology. 2021;11:572304. doi: 10.3389/fphar.2020.572304. PubMed DOI PMC
Yang X, Yang S, Hong C, Yu W, Guonian W. Panax Notoginseng Saponins attenuates sevoflurane-induced nerve cell injury by modulating AKT signaling pathway. Molecular Medicine Reports. 2017;16(5):7829–34. doi: 10.3892/mmr.2017.7519. PubMed DOI
Wang C, Chen H, Ma S-t, Mao B-b, Chen Y, Xu H-N, et al. A network pharmacology approach for exploring the mechanisms of panax notoginseng saponins in ischaemic stroke. Evidence-Based Complementary and Alternative Medicine. 2021:2021. doi: 10.1155/2021/5582782. PubMed DOI PMC
Xie W, Zhu T, Dong X, Nan F, Meng X, Zhou P, et al. HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules. 2019;9(10):512. doi: 10.3390/biom9100512. PubMed DOI PMC
Zhou Y-j, Chen J-m, Sapkota K, Long J-y, Liao Y-j, Jiang J-j, et al. Pananx notoginseng saponins attenuate CCL2-induced cognitive deficits in rats via anti-inflammation and anti-apoptosis effects that involve suppressing over-activation of NMDA receptors. Biomedicine & Pharmacotherapy. 2020;127:110139. doi: 10.1016/j.biopha.2020.110139. PubMed DOI
Jiang Y, Li S, Xie X, Li H, Huang P, Li B, et al. Exploring the mechanism of Panax notoginseng saponins against Alzheimer’s disease by network pharmacology and experimental validation. Evidence-Based Complementary and Alternative Medicine. 2021:2021. doi: 10.1155/2021/5730812. PubMed DOI PMC
Liu S, Wang M, Xiao H, Ye J, Cao L, Li W, et al. Advancements in research on the effects of panax notoginseng saponin constituents in ameliorating learning and memory disorders. Heliyon. :2024. doi: 10.1016/j.heliyon.2024.e28581. PubMed DOI PMC
Shang J, Jiao J, Yan M, Wang J, Li Q, Shabuerjiang L, et al. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomedicine & Pharmacotherapy. 2023;161:114534. doi: 10.1016/j.biopha.2023.114534. PubMed DOI
Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R. Pathophysiology of ischemic stroke: role of oxidative stress. Current pharmaceutical design. 2020;26(34):4246–60. doi: 10.2174/1381612826666200708133912. PubMed DOI
Yang Y, Wang J, Li Y, Fan C, Jiang S, Zhao L, et al. HO-1 signaling activation by pterostilbene treatment attenuates mitochondrial oxidative damage induced by cerebral ischemia reperfusion injury. Molecular neurobiology. 2016;53:2339–53. doi: 10.1007/s12035-015-9194-2. PubMed DOI
Huang L, Reis C, Boling WW, Zhang JH. Stem cell therapy in brain ischemia: the role of mitochondrial transfer. Stem Cells and Development. 2020;29(9):555–61. doi: 10.1089/scd.2019.0237. PubMed DOI
Mokhtari B, Aboutaleb N, Nazarinia D, Nikougoftar M, Tousi SMTR, Molazem M, et al. Comparison of the effects of intramyocardial and intravenous injections of human mesenchymal stem cells on cardiac regeneration after heart failure. Iranian Journal of Basic Medical Sciences. 2020;23(7):879. PubMed PMC
Mokhtari B, Hamidi M, Badalzadeh R, Mahmoodpoor A. Mitochondrial transplantation protects against sepsis-induced myocardial dysfunction by modulating mitochondrial biogenesis and fission/fusion and inflammatory response. Molecular Biology Reports. 2023;50(3):2147–58. doi: 10.1007/s11033-022-08115-4. PubMed DOI
Mokhtari B, Badalzadeh R. Protective and deleterious effects of autophagy in the setting of myocardial ischemia/reperfusion injury: an overview. Molecular Biology Reports. 2022;49(11):11081–99. doi: 10.1007/s11033-022-07837-9. PubMed DOI
Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. International journal of molecular sciences. 2021;23(1):14. doi: 10.3390/ijms23010014. PubMed DOI PMC
