Bacterial Fluorinase FIA1 and Evolutionarily Related, Lysine-free StDUF62 Show Distinct Diastereoselectivity and Salt Sensitivity

. 2025 May 27 ; 10 (20) : 20509-20514. [epub] 20250515

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40454030

S-adenosyl-l-methionine (SAM) is a crucial enzymatic cofactor that is conserved across all domains of life. Despite the pivotal role of this cofactor, its chirality at the sulfonium sulfur and the differing biological activities of its epimers, (S,S)-SAM and (R,S)-SAM, are often overlooked. Although enzymes predominantly utilize the (S,S)-SAM epimer, due to spontaneous epimerization at the sulfonium sulfur of SAM, the (R,S)-SAM epimer is present in all cells as well as in commercial SAM-containing products. Recently, an enzyme containing the DUF62 domain, identified as Salinispora tropica (StDUF62), has been shown to selectively hydrolyze (R,S)-SAM. It has been hypothesized that this function prevents the problematic accumulation of this epimer. Fluorinases, the only enzymes known to naturally incorporate fluorine into organic compounds, are homologous to enzymes of the DUF62 family. The discovery of unexpected diastereoselectivity of StDUF62 however raised an important question regarding the diastereoselectivity of the evolutionarily related bacterial fluorinase FlA1, an enzyme of significant importance. Given the relationship between these enzymes and their similar catalytic functions, it would be reasonable to hypothesize that FlA1 might also demonstrate activity toward the (R,S)-SAM diastereomer. Despite this homology, we report here the opposite diastereoselectivity of StDUF62 and Streptomyces sp. MA37 fluorinase (FlA1). The unusual lysine-free amino acid composition of StDUF62 suggests an evolutionary origin in haloadaptation; however, its SAM-hydrolyzing activity is greatly diminished at physiological concentrations of KCl or NaCl. We show that this inhibition is not caused solely by the competition with the chloride anion, as Na2SO4 at equivalent ionic strength is also greatly diminishing StDUF62 activity, contrary to the fluorinating activity of FlA1. Both adenosine and increased ionic strength promoted StDUF62 trimer formation, whereas increased ionic strength alone led to inhibition. Considering the contrast between the wasteful hydrolysis of (R,S)-SAM and the energetically efficient mechanisms of eukaryotic (R,S)-SAM recycling, we suggest that (R,S)-SAM hydrolysis might not be the physiological function of StDUF62.

Zobrazit více v PubMed

Goldman A. D., Kacar B.. Cofactors are Remnants of Life’s Origin and Early Evolution. J. Mol. Evol. 2021;89:127–133. doi: 10.1007/s00239-020-09988-4. PubMed DOI PMC

Kozbial P. Z., Mushegian A. R.. Natural history of S-adenosylmethionine-binding proteins. BMC Struct. Biol. 2005;5:19. doi: 10.1186/1472-6807-5-19. PubMed DOI PMC

Abdelraheem E., Thair B., Varela R. F., Jockmann E., Popadić D., Hailes H. C., Ward J. M., Iribarren A. M., Lewkowicz E. S., Andexer J. N.. et al. Methyltransferases: Functions and Applications. Chembiochem. 2022;23:e202200212. doi: 10.1002/cbic.202200212. PubMed DOI PMC

Mehta A. P.. et al. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions. J. Biol. Chem. 2015;290:3980–3986. doi: 10.1074/jbc.R114.623793. PubMed DOI PMC

Zhang J., Klinman J. P.. High-performance liquid chromatography separation of the (S,S)- and (R,S)-forms of S-adenosyl-L-methionine. Anal. Biochem. 2015;476:81–83. doi: 10.1016/j.ab.2015.02.004. PubMed DOI PMC

de la Haba G., Jamieson G. A., Mudd S. H., Richards H. H.. S-adenosylmethionine: The relation of configuration at the sulfonium center to enzymatic Reactivity1. J. Am. Chem. Soc. 1959;81:3975–3980. doi: 10.1021/ja01524a039. DOI

Vinci C. R., Clarke S. G.. Recognition of age-damaged (R,S)-adenosyl-L-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2007;282:8604–8612. doi: 10.1074/jbc.M610029200. PubMed DOI

Vinci C. R., Clarke S. G.. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2010;285:20526–20531. doi: 10.1074/jbc.M110.113076. PubMed DOI PMC

Matos J. R., Wong C.-H.. S-adenosylmethionine: Stability and stabilization. Bioorg. Chem. 1987;15:71–80. doi: 10.1016/0045-2068(87)90008-3. DOI

O’Hagan D., Schaffrath C., Cobb S. L., Hamilton J. T. G., Murphy C. D.. Biochemistry: biosynthesis of an organofluorine molecule. Nature. 2002;416:279. doi: 10.1038/416279a. PubMed DOI

Deng H., O’Hagan D.. The fluorinase, the chlorinase and the duf-62 enzymes. Curr. Opin. Chem. Biol. 2008;12:582–592. doi: 10.1016/j.cbpa.2008.06.036. PubMed DOI

Eustáquio A. S., Härle J., Noel J. P., Moore B. S.. S-Adenosyl-L-methionine hydrolase (adenosine-forming), a conserved bacterial and archaeal protein related to SAM-dependent halogenases. Chembiochem. 2008;9:2215–2219. doi: 10.1002/cbic.200800341. PubMed DOI PMC

Kornfuehrer T., Romanowski S., de Crécy-Lagard V., Hanson A. D., Eustáquio A. S.. An Enzyme Containing the Conserved Domain of Unknown Function DUF62 Acts as a Stereoselective (R, S)-S-Adenosylmethionine Hydrolase. Chembiochem. 2020;21:3495–3499. doi: 10.1002/cbic.202000349. PubMed DOI PMC

Linster C. L., Van Schaftingen E., Hanson A. D.. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 2013;9:72–80. doi: 10.1038/nchembio.1141. PubMed DOI

Sun H.. et al. Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate. Angew. Chem., Int. Ed. Engl. 2016;55:14277–14280. doi: 10.1002/anie.201606722. PubMed DOI

Varadi M.. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. doi: 10.1093/nar/gkab1061. PubMed DOI PMC

Stolowitz M. L., Minch M. J.. S-adenosyl-L-methionine and S-adenosyl-L-homocysteine, an NMR study. J. Am. Chem. Soc. 1981;103(20):6015–6019. doi: 10.1021/ja00410a004. DOI

Bennett B. D.. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 2009;5:593–599. doi: 10.1038/nchembio.186. PubMed DOI PMC

Buchanan G. O.. et al. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org. Lett. 2005;7:2731–2734. doi: 10.1021/ol050901i. PubMed DOI

Fukuchi S., Yoshimune K., Wakayama M., Moriguchi M., Nishikawa K.. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 2003;327:347–357. doi: 10.1016/S0022-2836(03)00150-5. PubMed DOI

Tamura T., Hayakawa M., Hatano K.. A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int. J. Syst. Bacteriol. 1998;48(3):995–1005. doi: 10.1099/00207713-48-3-995. PubMed DOI

Cascio A., Mandraffino G., Cinquegrani M., Delfino D., Mandraffino R., Romeo O., Criseo G., Saitta A.. Actinomadura pelletieri mycetoma – an atypical case with spine and abdominal wall involvement. J. Med. Microbiol. 2011;60(5):673–676. doi: 10.1099/jmm.0.027862-0. PubMed DOI

Ventosa A., Nieto J. J., Oren A.. Biology of moderately halophilic aerobic Bacteria. Microbiol. Mol. Biol. Rev. 1998;62(2):504–544. doi: 10.1128/MMBR.62.2.504-544.1998. PubMed DOI PMC

Mincer T. J., Fenical W., Jensen P. R.. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl. Environ. Microbiol. 2005;71:7019–7028. doi: 10.1128/AEM.71.11.7019-7028.2005. PubMed DOI PMC

Schmitt R. W., Ledwell J. R., Montgomery E. T., Polzin K. L., Toole J. M.. Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science. 2005;308:685–688. doi: 10.1126/science.1108678. PubMed DOI

Schuck P.. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Kittilä T.. et al. Oligomerization engineering of the fluorinase enzyme leads to an active trimer that supports synthesis of fluorometabolites in vitro. Microb. Biotechnol. 2022;15:1622–1632. doi: 10.1111/1751-7915.14009. PubMed DOI PMC

Fleming P. J., Fleming K. G.. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties. Biophys. J. 2018;114:856–869. doi: 10.1016/j.bpj.2018.01.002. PubMed DOI PMC

Dong C.. et al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature. 2004;427:561–565. doi: 10.1038/nature02280. PubMed DOI

Zhu X., Robinson D. A., McEwan A. R., O’Hagan D., Naismith J. H.. Mechanism of enzymatic fluorination in Streptomyces cattleya. J. Am. Chem. Soc. 2007;129:14597–14604. doi: 10.1021/ja0731569. PubMed DOI PMC

Senn H. M., O’Hagan D., Thiel W.. Insight into enzymatic C-F bond formation from QM and QM/MM calculations. J. Am. Chem. Soc. 2005;127:13643–13655. doi: 10.1021/ja053875s. PubMed DOI

Goncharov N. V., Jenkins R. O., Radilov A. S.. Toxicology of fluoroacetate: a review, with possible directions for therapy research. J. Appl. Toxicol. 2006;26:148–161. doi: 10.1002/jat.1118. PubMed DOI

Springer R.. Zum Wirkungsmechanismus des Fluoracetats im Säurestoffwechsel von Aspergillus niger. Planta Med. 1960;8:411–419. doi: 10.1055/s-0028-1101577. DOI

Mager J., Goldblum-Sinai J., Blank I.. Effect of fluoroacetic acid and allied fluoroanalogues on growth of Escherichia coli. I. Pattern of inhibition. J. Bacteriol. 1955;70:320–325. doi: 10.1128/jb.70.3.320-325.1955. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...