Bacterial Fluorinase FIA1 and Evolutionarily Related, Lysine-free StDUF62 Show Distinct Diastereoselectivity and Salt Sensitivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40454030
PubMed Central
PMC12120602
DOI
10.1021/acsomega.5c00855
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
S-adenosyl-l-methionine (SAM) is a crucial enzymatic cofactor that is conserved across all domains of life. Despite the pivotal role of this cofactor, its chirality at the sulfonium sulfur and the differing biological activities of its epimers, (S,S)-SAM and (R,S)-SAM, are often overlooked. Although enzymes predominantly utilize the (S,S)-SAM epimer, due to spontaneous epimerization at the sulfonium sulfur of SAM, the (R,S)-SAM epimer is present in all cells as well as in commercial SAM-containing products. Recently, an enzyme containing the DUF62 domain, identified as Salinispora tropica (StDUF62), has been shown to selectively hydrolyze (R,S)-SAM. It has been hypothesized that this function prevents the problematic accumulation of this epimer. Fluorinases, the only enzymes known to naturally incorporate fluorine into organic compounds, are homologous to enzymes of the DUF62 family. The discovery of unexpected diastereoselectivity of StDUF62 however raised an important question regarding the diastereoselectivity of the evolutionarily related bacterial fluorinase FlA1, an enzyme of significant importance. Given the relationship between these enzymes and their similar catalytic functions, it would be reasonable to hypothesize that FlA1 might also demonstrate activity toward the (R,S)-SAM diastereomer. Despite this homology, we report here the opposite diastereoselectivity of StDUF62 and Streptomyces sp. MA37 fluorinase (FlA1). The unusual lysine-free amino acid composition of StDUF62 suggests an evolutionary origin in haloadaptation; however, its SAM-hydrolyzing activity is greatly diminished at physiological concentrations of KCl or NaCl. We show that this inhibition is not caused solely by the competition with the chloride anion, as Na2SO4 at equivalent ionic strength is also greatly diminishing StDUF62 activity, contrary to the fluorinating activity of FlA1. Both adenosine and increased ionic strength promoted StDUF62 trimer formation, whereas increased ionic strength alone led to inhibition. Considering the contrast between the wasteful hydrolysis of (R,S)-SAM and the energetically efficient mechanisms of eukaryotic (R,S)-SAM recycling, we suggest that (R,S)-SAM hydrolysis might not be the physiological function of StDUF62.
Zobrazit více v PubMed
Goldman A. D., Kacar B.. Cofactors are Remnants of Life’s Origin and Early Evolution. J. Mol. Evol. 2021;89:127–133. doi: 10.1007/s00239-020-09988-4. PubMed DOI PMC
Kozbial P. Z., Mushegian A. R.. Natural history of S-adenosylmethionine-binding proteins. BMC Struct. Biol. 2005;5:19. doi: 10.1186/1472-6807-5-19. PubMed DOI PMC
Abdelraheem E., Thair B., Varela R. F., Jockmann E., Popadić D., Hailes H. C., Ward J. M., Iribarren A. M., Lewkowicz E. S., Andexer J. N.. et al. Methyltransferases: Functions and Applications. Chembiochem. 2022;23:e202200212. doi: 10.1002/cbic.202200212. PubMed DOI PMC
Mehta A. P.. et al. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions. J. Biol. Chem. 2015;290:3980–3986. doi: 10.1074/jbc.R114.623793. PubMed DOI PMC
Zhang J., Klinman J. P.. High-performance liquid chromatography separation of the (S,S)- and (R,S)-forms of S-adenosyl-L-methionine. Anal. Biochem. 2015;476:81–83. doi: 10.1016/j.ab.2015.02.004. PubMed DOI PMC
de la Haba G., Jamieson G. A., Mudd S. H., Richards H. H.. S-adenosylmethionine: The relation of configuration at the sulfonium center to enzymatic Reactivity1. J. Am. Chem. Soc. 1959;81:3975–3980. doi: 10.1021/ja01524a039. DOI
Vinci C. R., Clarke S. G.. Recognition of age-damaged (R,S)-adenosyl-L-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2007;282:8604–8612. doi: 10.1074/jbc.M610029200. PubMed DOI
Vinci C. R., Clarke S. G.. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2010;285:20526–20531. doi: 10.1074/jbc.M110.113076. PubMed DOI PMC
Matos J. R., Wong C.-H.. S-adenosylmethionine: Stability and stabilization. Bioorg. Chem. 1987;15:71–80. doi: 10.1016/0045-2068(87)90008-3. DOI
O’Hagan D., Schaffrath C., Cobb S. L., Hamilton J. T. G., Murphy C. D.. Biochemistry: biosynthesis of an organofluorine molecule. Nature. 2002;416:279. doi: 10.1038/416279a. PubMed DOI
Deng H., O’Hagan D.. The fluorinase, the chlorinase and the duf-62 enzymes. Curr. Opin. Chem. Biol. 2008;12:582–592. doi: 10.1016/j.cbpa.2008.06.036. PubMed DOI
Eustáquio A. S., Härle J., Noel J. P., Moore B. S.. S-Adenosyl-L-methionine hydrolase (adenosine-forming), a conserved bacterial and archaeal protein related to SAM-dependent halogenases. Chembiochem. 2008;9:2215–2219. doi: 10.1002/cbic.200800341. PubMed DOI PMC
Kornfuehrer T., Romanowski S., de Crécy-Lagard V., Hanson A. D., Eustáquio A. S.. An Enzyme Containing the Conserved Domain of Unknown Function DUF62 Acts as a Stereoselective (R, S)-S-Adenosylmethionine Hydrolase. Chembiochem. 2020;21:3495–3499. doi: 10.1002/cbic.202000349. PubMed DOI PMC
Linster C. L., Van Schaftingen E., Hanson A. D.. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 2013;9:72–80. doi: 10.1038/nchembio.1141. PubMed DOI
Sun H.. et al. Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate. Angew. Chem., Int. Ed. Engl. 2016;55:14277–14280. doi: 10.1002/anie.201606722. PubMed DOI
Varadi M.. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. doi: 10.1093/nar/gkab1061. PubMed DOI PMC
Stolowitz M. L., Minch M. J.. S-adenosyl-L-methionine and S-adenosyl-L-homocysteine, an NMR study. J. Am. Chem. Soc. 1981;103(20):6015–6019. doi: 10.1021/ja00410a004. DOI
Bennett B. D.. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 2009;5:593–599. doi: 10.1038/nchembio.186. PubMed DOI PMC
Buchanan G. O.. et al. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org. Lett. 2005;7:2731–2734. doi: 10.1021/ol050901i. PubMed DOI
Fukuchi S., Yoshimune K., Wakayama M., Moriguchi M., Nishikawa K.. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 2003;327:347–357. doi: 10.1016/S0022-2836(03)00150-5. PubMed DOI
Tamura T., Hayakawa M., Hatano K.. A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int. J. Syst. Bacteriol. 1998;48(3):995–1005. doi: 10.1099/00207713-48-3-995. PubMed DOI
Cascio A., Mandraffino G., Cinquegrani M., Delfino D., Mandraffino R., Romeo O., Criseo G., Saitta A.. Actinomadura pelletieri mycetoma – an atypical case with spine and abdominal wall involvement. J. Med. Microbiol. 2011;60(5):673–676. doi: 10.1099/jmm.0.027862-0. PubMed DOI
Ventosa A., Nieto J. J., Oren A.. Biology of moderately halophilic aerobic Bacteria. Microbiol. Mol. Biol. Rev. 1998;62(2):504–544. doi: 10.1128/MMBR.62.2.504-544.1998. PubMed DOI PMC
Mincer T. J., Fenical W., Jensen P. R.. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl. Environ. Microbiol. 2005;71:7019–7028. doi: 10.1128/AEM.71.11.7019-7028.2005. PubMed DOI PMC
Schmitt R. W., Ledwell J. R., Montgomery E. T., Polzin K. L., Toole J. M.. Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science. 2005;308:685–688. doi: 10.1126/science.1108678. PubMed DOI
Schuck P.. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Kittilä T.. et al. Oligomerization engineering of the fluorinase enzyme leads to an active trimer that supports synthesis of fluorometabolites in vitro. Microb. Biotechnol. 2022;15:1622–1632. doi: 10.1111/1751-7915.14009. PubMed DOI PMC
Fleming P. J., Fleming K. G.. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties. Biophys. J. 2018;114:856–869. doi: 10.1016/j.bpj.2018.01.002. PubMed DOI PMC
Dong C.. et al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature. 2004;427:561–565. doi: 10.1038/nature02280. PubMed DOI
Zhu X., Robinson D. A., McEwan A. R., O’Hagan D., Naismith J. H.. Mechanism of enzymatic fluorination in Streptomyces cattleya. J. Am. Chem. Soc. 2007;129:14597–14604. doi: 10.1021/ja0731569. PubMed DOI PMC
Senn H. M., O’Hagan D., Thiel W.. Insight into enzymatic C-F bond formation from QM and QM/MM calculations. J. Am. Chem. Soc. 2005;127:13643–13655. doi: 10.1021/ja053875s. PubMed DOI
Goncharov N. V., Jenkins R. O., Radilov A. S.. Toxicology of fluoroacetate: a review, with possible directions for therapy research. J. Appl. Toxicol. 2006;26:148–161. doi: 10.1002/jat.1118. PubMed DOI
Springer R.. Zum Wirkungsmechanismus des Fluoracetats im Säurestoffwechsel von Aspergillus niger. Planta Med. 1960;8:411–419. doi: 10.1055/s-0028-1101577. DOI
Mager J., Goldblum-Sinai J., Blank I.. Effect of fluoroacetic acid and allied fluoroanalogues on growth of Escherichia coli. I. Pattern of inhibition. J. Bacteriol. 1955;70:320–325. doi: 10.1128/jb.70.3.320-325.1955. PubMed DOI PMC