Comparison of Swim-Up and Microfluidic Sperm Sorting Methods in Selection of Sperm for Intracytoplasmic Sperm Injection
Language English Country Switzerland Media electronic
Document type Journal Article, Comparative Study
Grant support
MSMT INTER-COST LUC 23009
Czech ministry of Education, Youth and Sport
MH CZ - DRO FNBr 65269705
Czech ministry of Health
CA20119
Andronet - COST
VEGA-2/0074/24
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
PubMed
40508183
PubMed Central
PMC12155474
DOI
10.3390/ijms26115374
PII: ijms26115374
Knihovny.cz E-resources
- Keywords
- IVF/ICSI, infertility, sperm analysis, sperm separation, spermatozoa,
- MeSH
- Semen Analysis methods MeSH
- Adult MeSH
- DNA Fragmentation MeSH
- Sperm Injections, Intracytoplasmic * methods MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial MeSH
- Microfluidics * methods MeSH
- Sperm Motility * MeSH
- Infertility, Male therapy MeSH
- Cell Separation * methods MeSH
- Spermatozoa * cytology metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
The use of microfluidic sperm sorting (MFSS) systems in infertility treatment is increasing due to their practicality and ease of use. While often presented as highly effective, their efficacy in patients with varying sperm analysis results remains uncertain. In this study, we evaluated the effectiveness of MFSS compared with the swim-up (SU) technique in terms of oxygen radical levels and spermiogram parameters. Samples from each patient were processed using both methods, followed by assessments of sperm concentration, motility, morphology, DNA integrity, acrosomal status, and mitochondrial membrane potential. Participants were selected based on sperm analysis and categorized as normozoospermic (n = 40) or non-normozoospermic (n = 28). An analysis of separation techniques revealed no significant differences, except for a lower percentage of DNA-fragmented sperm in the MFSS group compared with SU within the non-normozoospermic cohort (SU: 10.0% vs. MFSS: 5.69%, p = 0.027). No differences were observed between SU and MFSS in normozoospermic men. The MFSS method is a simple technique, frequently used in laboratories, that yields good results but does not offer a substantial advantage over SU. The primary benefit of MFSS appears to be a significant reduction in the proportion of sperm with DNA fragmentation compared with SU in patients with abnormal sperm analysis results.
College of Agriculture and Life Sciences Nort Carolina State University Raleigh NC 27695 USA
Department of Veterinary Medicine Nicolaus Copernicus University Gagarina 7 Str 87 100 Toruń Poland
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
See more in PubMed
Vaughan D.A., Leung A., Resetkova N., Ruthazer R., Penzias A.S., Sakkas D., Alper M.M. How many oocytes are optimal to achieve multiple live births with one stimulation cycle? The one-and-done approach. Fertil. Steril. 2017;107:397–404.e3. doi: 10.1016/j.fertnstert.2016.10.037. PubMed DOI
Giojalas L.C., Guidobaldi H.A. Getting to and away from the egg, an interplay between several sperm transport mechanisms and a complex oviduct physiology. Mol. Cell. Endocrinol. 2020;518:110954. doi: 10.1016/j.mce.2020.110954. PubMed DOI
Williams M., Thompson L.A., Li T.C., Mackenna A., Barratt C.L., Cooke I.D. Uterine flushing: A method to recover spermatozoa and leukocytes. Hum. Reprod. 1993;8:925–928. doi: 10.1093/oxfordjournals.humrep.a138168. PubMed DOI
Mortimer D., Leslie E.E., Kelly R.W., Templeton A.A. Morphological selection of human spermatozoa in vivo and in vitro. J. Reprod. Fertil. 1982;64:391–399. doi: 10.1530/jrf.0.0640391. PubMed DOI
Pérez-Cerezales S., Ramos-Ibeas P., Acuña O.S., Avilés M., Coy P., Rizos D., Gutiérrez-Adán A. The oviduct: From sperm selection to the epigenetic landscape of the embryo. Biol. Reprod. 2018;98:262–276. doi: 10.1093/biolre/iox173. PubMed DOI
Sakkas D., Ramalingam M., Garrido N., Barratt C.L. Sperm selection in natural conception: What can we learn from mother nature to improve assisted reproduction outcomes? Hum. Reprod. Update. 2015;21:711–726. doi: 10.1093/humupd/dmv042. PubMed DOI PMC
Baldini D., Ferri D., Baldini G.M., Lot D., Catino A., Vizziello D., Vizziello G. Sperm selection for ICSI: Do we have a winner? Cells. 2021;10:3566. doi: 10.3390/cells10123566. PubMed DOI PMC
Henkel R. Sperm preparation: State-of-the-art-physiological aspects and application of advanced sperm preparation methods. Asian J. Androl. 2012;14:260–269. doi: 10.1038/aja.2011.133. PubMed DOI PMC
Dai C., Zhang Z., Shan G., Chu L.T., Huang Z., Moskovtsev S., Librach C., Jarvi K., Sun Y. Advances in sperm analysis: Techniques, discoveries and applications. Nat. Rev. Urol. 2021;18:447–467. doi: 10.1038/s41585-021-00472-2. PubMed DOI
Dehghanpour F., Khalili M.A., Mangoli E., Talebi A.R., Anbari F., Shamsi F., Woodward B., Doostabadi M.R. Free centrifuge sorting method for high-count sperm preparation improves biological characteristics of human spermatozoa and clinical outcome: A sibling oocytes study. Andrologia. 2022;54:e14554. doi: 10.1111/and.14554. PubMed DOI
Zini A., Finelli A., Phang D., Jarvi K. Influence of semen processing technique on human sperm DNA integrity. Urology. 2000;56:1081–1084. doi: 10.1016/S0090-4295(00)00770-6. PubMed DOI
Yamanaka M., Tomita K., Hashimoto S., Matsumoto H., Satoh M., Kato H., Hosoi Y., Inoue M., Nakaoka Y., Morimoto Y. Combination of density gradient centrifugation and swim-up methods effectively decreases morphologically abnormal sperms. J. Reprod. Dev. 2016;62:599–606. doi: 10.1262/jrd.2016-112. PubMed DOI PMC
Gandini L., Lombardo F., Paoli D., Caruso F., Eleuteri P., Leter G., Ciriminna R., Culasso F., Dondero F., Lenzi A., et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum. Reprod. 2004;19:1409–1417. doi: 10.1093/humrep/deh233. PubMed DOI
Sakkas D., Alvarez J.G. Sperm DNA fragmentation: Mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 2010;93:1027–1036. doi: 10.1016/j.fertnstert.2009.10.046. PubMed DOI
Gotsiridze K., Nana M., Mariam M., Tamar J. Live motile sperm sorting device improves embryo aneuploidy: A Retrospective Cohort Study. Fertil. Reprod. 2024;06:117–122. doi: 10.1142/S2661318224500166. DOI
Quinn M.M., Jalalian L., Ribeiro S., Ona K., Demirci U., Cedars M.I., Rosen M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018;33:1388–1393. doi: 10.1093/humrep/dey239. PubMed DOI
Sheibak N., Amjadi F., Shamloo A., Zarei F., Zandieh Z. Microfluidic sperm sorting selects a subpopulation of high-quality sperm with a higher potential for fertilization. Hum. Reprod. 2024;39:902–911. doi: 10.1093/humrep/deae045. PubMed DOI
Banti M., Van Zyl E., Kafetzis D. Suprem preparation with microfluidic sperm sorting chip may improve intracytoplasmic sperm injection outcomes compared to density gradient centrifugation. Reprod. Sci. 2024;31:1695–1704. doi: 10.1007/s43032-024-01483-1. PubMed DOI PMC
Anbari F., Khalili M.A., Sultan Ahamed A.M., Mangoli E., Nabi A., Dehghanpour F., Sabour M. Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: A pilot study. Syst. Biol. Reprod. Med. 2021;67:137–143. doi: 10.1080/19396368.2020.1837994. PubMed DOI
Hsu C.T., Lee C.I., Lin F.S., Wang F.Z., Chang H.C., Wang T.E., Huang C.C., Tsao H.M., Lee M.S., Agarwal A. Live motile sperm sorting device for enhanced sperm-fertilization competency: Comparative analysis with density-gradient centrifugation and microfluidic sperm sorting. J. Assist. Reprod. Genet. 2023;40:1855–1864. doi: 10.1007/s10815-023-02838-4. PubMed DOI PMC
Feyzioglu B.S., Avul Z. Effects of sperm separation methods before intrauterine insemination on pregnancy outcomes and live birth rates: Differences between the swim-up and microfluidic chip techniques. Medicine. 2023;102:e36042. doi: 10.1097/MD.0000000000036042. PubMed DOI PMC
Leisinger C.A., Adaniya G., Freeman M.R., Behnke E.J., Aguirre M., VerMilyea M.D., Schiewe M.C. Effect of microfluidic sperm separation vs. standard sperm washing processes on laboratory outcomes and clinical pregnancy rates in an unselected patient population. Reprod. Med. 2021;2:125–130. doi: 10.3390/reprodmed2030013. DOI
Pujianto D.A., Oktarina M., Sharaswati I.A. Hydrogen peroxide has adverse effects on human sperm quality parameters, induces apoptosis, and reduces survival. J. Hum. Reprod. Sci. 2021;14:121–128. doi: 10.4103/jhrs.jhrs_241_20. PubMed DOI PMC
Andrabi S.W., Ara A., Saharan A., Jaffar M., Gugnani N., Esteves S.C. Sperm DNA fragmentation: Causes, evaluation and management in male infertility. JBRA Assist. Reprod. 2024;28:306–319. doi: 10.5935/1518-0557.20230076. PubMed DOI PMC
Wright C., Milne S., Leeson H. Sperm DNA damage caused by oxidative stress: Modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. Biomed. Online. 2014;28:684–703. doi: 10.1016/j.rbmo.2014.02.004. PubMed DOI
Vasilescu S.A., Ding L., Parast F.Y., Nosrati R., Warkiani M.E. Sperm quality metrics were improved by a biomimetic microfluidic selection platform compared to swim-up methods. Microsyst. Nanoeng. 2023;9:37. doi: 10.1038/s41378-023-00501-7. PubMed DOI PMC
Kocur O.M., Xie P., Cheung S., Souness S., McKnight M., Rosenwaks Z., Palermo G.D. Can a sperm selection technique improve embryo ploidy? Andrology. 2023;11:1605–1612. doi: 10.1111/andr.13362. PubMed DOI PMC
Parrella A., Keating D., Cheung S., Xie P., Stewart J.D., Rosenwaks Z., Palermo G.D. A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. J. Assist. Reprod. Genet. 2019;36:2057–2066. doi: 10.1007/s10815-019-01543-5. PubMed DOI PMC
Shirota K., Yotsumoto F., Itoh H., Obama H., Hidaka N., Nakajima K., Miyamoto S. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 2016;105:315–321.e1. doi: 10.1016/j.fertnstert.2015.10.023. PubMed DOI
Muratori M., Tarozzi N., Cambi M., Boni L., Iorio A.L., Passaro C., Luppino B., Nadalini M., Marchiani S., Tamburrino L., et al. Variation of DNA fragmentation levels during density gradient sperm selection for assisted reproduction techniques: A possible new male predictive parameter of pregnancy? Medicine. 2016;95:e3624. doi: 10.1097/MD.0000000000003624. PubMed DOI PMC
Takeshima T., Yumura Y., Kuroda S., Kawahara T., Uemura H., Iwasaki A. Effect of density gradient centrifugation on reactive oxygen species in human semen. Syst. Biol. Reprod. Med. 2017;63:192–198. doi: 10.1080/19396368.2017.1294214. PubMed DOI
Raad G., Bakos H.W., Bazzi M., Mourad Y., Fakih F., Shayya S., Mchantaf L., Fakih C. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: A prospective study. Andrology. 2021;9:1549–1559. doi: 10.1111/andr.13038. PubMed DOI
Esteves S.C., Sharma R.K., Thomas A.J., Agarwal A. Effect of swim-up sperm washing and subsequent capacitation on acrosome status and functional membrane integrity of normal sperm. Int. J. Fertil. Womens Med. 2000;45:335–341. PubMed
Paoli D., Gallo M., Rizzo F., Baldi E., Francavilla S., Lenzi A., Lombardo F., Gandini L. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 2011;95:2315–2319. doi: 10.1016/j.fertnstert.2011.03.059. PubMed DOI
Agarwal A., Saleh R.A. Role of oxidants in male infertility: Rationale, significance, and treatment. Urol. Clin. N. Am. 2002;29:817–827. doi: 10.1016/S0094-0143(02)00081-2. PubMed DOI
Ferreira Aderaldo J., da Silva Maranhão K., Ferreira Lanza D.C. Does microfluidic sperm selection improve clinical pregnancy and miscarriage outcomes in assisted reproductive treatments? A systematic review and meta-analysis. PLoS ONE. 2023;18:e0292891. doi: 10.1371/journal.pone.0292891. PubMed DOI PMC
Jahangiri A.R., Ziarati N., Dadkhah E., Bucak M.N., Rahimizadeh P., Shahverdi A., Sadighi Gilani M.A., Topraggaleh T.R. Microfluidics: The future of sperm selection in assisted reproduction. Andrology. 2024;12:1236–1252. doi: 10.1111/andr.13578. PubMed DOI
World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press; Geneva, Switzerland: 2010. pp. 1–271.
Doostabadi M.R., Mangoli E., Marvast L.D., Dehghanpour F., Maleki B., Torkashvand H., Talebi A.R. Microfluidic devices employing chemo- and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation. Andrologia. 2022;54:e14623. doi: 10.1111/and.14623. PubMed DOI
Estevez S.C., Verza S. Relationship of in vitro acrosome reacton to sperm function: An update. Open Rep. Sci. J. 2011;3:72–84. doi: 10.2174/1874255601103010072. DOI
Gangwar C., Kharche S.D., Mishra A.K., Saraswat S., Kumar N., Sikarwar A.K. Effect of diluent sugars on capacitation status and acrosome reaction of spermatozoa in buck semen at refrigerated temperature. Trop. Anim. Health Prod. 2020;52:3409–3415. doi: 10.1007/s11250-020-02374-8. PubMed DOI
Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA. 1991;88:3671–3675. doi: 10.1073/pnas.88.9.3671. PubMed DOI PMC