Extraordinary kinetic inertness of lanthanide(iii) complexes of pyridine-rigidified 18-membered hexaazamacrocycles with four acetate pendant arms

. 2025 Jul 10 ; 16 (27) : 12558-12567. [epub] 20250530

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40510332

Large polyazamacrocycles are used for the complexation of large metal ions. However, their coordination chemistry has not been frequently studied until now. An eighteen-membered macrocycle with two rigidifying pyridine rings and four aliphatic amino groups substituted with four acetic acid pendants, H4pyta, provides a large ligand cavity and coordination number (CN) up to 10. Trivalent lanthanides were chosen to study the effect of metal ion size on the properties of H4pyta complexes. The complexes were formed under relatively mild conditions and two isomers were observed, depending on the Ln(iii) ion, in different mutual ratios during the synthesis. Going to smaller Ln(iii) ions, the CN decreases from 10 to 9. Stability constants of Ln(iii)-H4pyta complexes with CN 10 are comparable with those of Ln(iii)-H4dota complexes despite the lower overall basicity of H4pyta. In the ten-coordinated isomers, Ln(iii) ions are perfectly 3D-wrapped inside the ligand cavity, and the ligand is minimally distorted. It leads to extreme kinetic inertness of the complexes. Dissociation of the Ln(iii)-H4pyta complexes in 5 M HClO4 and at 90 °C is very slow and requires up to several hours; the inertness is 102-104 times higher than that of the Ln(iii)-H4dota complexes. The solid-state structures point to the symmetric wrapping of metal ions and CN 10 being responsible for the stability of species multiply protonated on the coordinated acetate groups. The results suggest that H4pyta can be considered a leading scaffold for the future development of ligands intended for large metal ion binding in nuclear medicine, e.g. for α-emitting radioisotopes from the bottom of the periodic table.

Zobrazit více v PubMed

Urso L. Nieri A. Uccelli L. Castello A. Artioli P. Cittanti C. Marzola M. C. Florimonte L. Castellani M. Bissoli S. Porto F. Boschi A. Evangelista L. Bartolomei M. Pharmaceutics. 2023;15:1110. PubMed PMC

Keam S. J. Mol. Diagn. Ther. 2022;26:467–475. PubMed PMC

Boros A. Packard A. B. Chem. Rev. 2019;119:870–901. PubMed

Kostelnik T. I. Orvig C. Chem. Rev. 2019;119:902–956. doi: 10.1021/acs.chemrev.8b00294. PubMed DOI

Pallares R. M. Abergel R. J. Front. Med. 2023;9:1020188. doi: 10.3389/fmed.2022.1020188. PubMed DOI PMC

Thiele N. A. Brown V. Kelly J. M. Amor-Coarasa A. Jermilova U. MacMillan S. N. Nikolopoulou A. Ponnala S. Ramogida C. F. Robertson A. K. H. Rodríguez-Rodríguez C. Schaffer P. Williams Jr C. Babich J. W. Radchenko V. Wilson J. J. Angew. Chem., Int. Ed. 2017;56:14712–14717. doi: 10.1002/anie.201709532. PubMed DOI

Hu A. Wilson J. J. Acc. Chem. Res. 2022;55:904–915. doi: 10.1021/acs.accounts.2c00003. PubMed DOI PMC

Roca-Sabio A. Mato-Iglesias M. Esteban-Gómez D. Tóth É. de Blas A. Platas-Iglesias C. Rodríguez-Blas T. J. Am. Chem. Soc. 2009;131:3331–3341. doi: 10.1021/ja808534w. PubMed DOI

Kelly J. M. Amor-Coarasa A. Ponnala S. Nikolopoulou A. Williams Jr C. Thiele A. A. Schlyer D. Wilson J. J. DiMagno S. G. Babich J. W. J. Nucl. Med. 2019;60:649–655. doi: 10.2967/jnumed.118.219592. PubMed DOI

Hu A. Aluicio-Sarduy E. Brown V. MacMillan S. N. Becker K. V. Barnhart T. E. Radchenko V. Ramogida C. F. Engle J. W. Wilson J. J. J. Am. Chem. Soc. 2021;143:10429–10440. doi: 10.1021/jacs.1c05339. PubMed DOI PMC

Hu A. Simms M. E. Kertesz V. Wilson J. J. Thiele N. A. Inorg. Chem. 2022;61:12847–12855. doi: 10.1021/acs.inorgchem.2c01998. PubMed DOI PMC

Yang H. Zhang C. Yuan Z. Rodriguez-Rodriguez C. Robertson A. Radchenko V. Perron R. Gendron D. Causey P. Gao F. Bénard F. Schaffer P. Chem.–Eur. J. 2020;26:11435–11440. doi: 10.1002/chem.202002999. PubMed DOI

Koniar H. Wharton L. Ingham A. Oliver A. P. M. Merkens H. Rodríguez-Rodríıguez C. Kunz P. Radchenko V. Yang H. Uribe A. R. C. Schaffer P. J. Nucl. Med. 2024;65:1762–1768. doi: 10.2967/jnumed.124.267999. PubMed DOI

Matazova E. V. Egorova B. V. Zubenko A. D. Pashanova A. V. Mitrofanov A. A. Fedorova O. A. Ermolaev S. V. Vasiliev A. N. Kalmykov S. N. Inorg. Chem. 2023;62:12223–12236. doi: 10.1021/acs.inorgchem.3c00314. PubMed DOI

Kim W. D. Kiefer G. E. Maton F. McMillan K. Muller R. N. Sherry A. D. Inorg. Chem. 1995;34:2233–2243. doi: 10.1021/ic00112a041. DOI

Miao L. Bell D. Rothremel Jr G. L. Bryant Jr L. H. Fitzsimmons P. M. Jackels S. C. Supramol. Chem. 1996;6:365–373. doi: 10.1080/10610279608032556. DOI

Valencia L. Martinez J. Macías A. Bastida R. Carvalho R. A. Geraldes C. F. G. C. Inorg. Chem. 2002;41:5300–5312. doi: 10.1021/ic0257017. PubMed DOI

Simms M. E. Li Z. Sibley M. M. Ivanov A. S. Lara C. M. Johnstone T. C. Kertesz V. Fears A. White F. D. Thorek D. L. J. Thiele N. A. Chem. Sci. 2024;15:11279–11286. doi: 10.1039/D3SC06854D. PubMed DOI PMC

Harriswangler C. McNeil B. L. Brandariz I. Valencia L. Esteban-Gomez D. Ramogida C. F. Platas-Iglesias C. Chem.–Eur. J. 2024;30:e202400434. doi: 10.1002/chem.202400434. PubMed DOI

Cacheris W. P. Nickle S. K. Sherry A. D. Inorg. Chem. 1987;26:958–960. doi: 10.1021/ic00253a038. DOI

Burai L. Fábián I. Király R. Szilágyi E. Brücher E. J. Chem. Soc., Dalton Trans. 1998:243–248. doi: 10.1039/A705158A. DOI

Rodríguez-Rodríguez A. Esteban-Gómez D. Tripier R. Tircsó G. Garda Z. Tóth I. de Blas A. Rodríguez-Blas T. Platas-Iglesias C. J. Am. Chem. Soc. 2014;136:17954–17957. doi: 10.1021/ja511331n. PubMed DOI

Harriswangler C. Caneda-Martínez L. Rousseaux O. Esteban-Gómez D. Fougeére O. Pujales-Paradela R. Valencia L. Fernández M. I. Lepareur N. Platas-Iglesias C. Inorg. Chem. 2022;61:6209–6222. doi: 10.1021/acs.inorgchem.2c00378. PubMed DOI PMC

Castro G. Regueiro-Figueroa M. Esteban-Gumez D. Bastida R. Macías A. Pérez-Lourido P. Platas-Iglesias C. Valencia L. Chem.–Eur. J. 2015;21:18662–18670. doi: 10.1002/chem.201502937. PubMed DOI

Brücher E. Top. Curr. Chem. 2002;221:103–122. doi: 10.1007/3-540-45733-X_4. DOI

Brücher E., Tircsó G., Baranyai Z., Kovács Z. and Sherry A. D., in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, ed. Merbach, A., Helm, L. and Tóth, É., Wiley, Chichester, 2013, pp. 157–208

Wang X. Jin T. Comblin V. Lopez-Mut A. Merciny E. Desreux J. F. A. Inorg. Chem. 1992;31:1095–1099. doi: 10.1021/ic00032a034. DOI

Brücher E. Laurenczy G. Makra Z. Inorg. Chim. Acta. 1987;139:141–142. doi: 10.1016/S0020-1693(00)84060-8. DOI

Tóth É. Brücher E. Lázár I. Tóth I. Inorg. Chem. 1994;33:4070–4076. doi: 10.1021/ic00096a036. DOI

Szilágyi E. Tóth É. Brücher E. Merbach A. E. J. Chem. Soc., Dalton Trans. 1999:2481–2486. doi: 10.1039/A903379C. DOI

Kubíček V. Havlíčková J. Kotek J. Tircsó G. Hermann P. Tóth É. Lukeš I. Inorg. Chem. 2010;49:10960–10969. doi: 10.1021/ic101378s. PubMed DOI

Woods M. Aime S. Botta M. Howard J. A. K. Moloney J. M. Navet M. Parker D. Port M. Rousseaux M. O. J. Am. Chem. Soc. 2000;122:9781–9792. doi: 10.1021/ja994492v. DOI

Thomsen M. S. Andersen H. O. B. Sørensen T. J. Dalton Trans. 2022;51:14118–14124. doi: 10.1039/D2DT02172B. PubMed DOI

David T. Šedinová M. Myšková A. Kuneš J. Maletínská L. Pohl R. Dračínský M. Mertlíková-Kaiserová H. Čížek K. Klepetářová B. Litecká M. Kaňa A. Sýkora D. Jaroš A. Straka M. Polášek M. Nat. Commun. 2024;15:9836. doi: 10.1038/s41467-024-53867-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...