Implications of Extra-column Effects for Targeted or Untargeted Microflow LC-MS
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40556882
PubMed Central
PMC12183583
DOI
10.1021/acsmeasuresciau.5c00015
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS, band broadening, extra-column effects, instrumentation, liquid chromatography, omics, proteomics,
- Publikační typ
- časopisecké články MeSH
Mass spectrometry (MS) has changed our understanding of health, disease, and the environment through untargeted analyses where entire molecular classes are investigated. These techniques generate huge amounts of data which when processed by statistical tools can identify important molecular features or biomarkers. The complexities of these samples are not compatible with direct introduction to the MS system and require a high-resolution separation step, typically low flow liquid chromatography (LC), prior to MS. LC columns that can produce adequate linear velocities at these low flow rates are small in volume making their results susceptible to resolution loss in extra-column volumes. Here, we investigate the implications of the extra-column effects in five LC-MS systems with triple quadrupole and orbitrap mass analyzers. The extra-column volume of these systems in their standard configuration ranged from 26.4 to 78.1 μL which we reduced to 9.57 to 18.7 μL by optimizing the fluidics. The effects of this volume reduction were assessed by studying a hydrolyzed protein sample in a proteomics environment where the intensity of the largest MS peak was improved by 1.8-3.8×. Additionally, the number of molecular features detected in the protein sample improved by up to 7.5×. The relationship between extra-column volumetric variance and flow rate shows that broadening will become much larger for MS detectors at higher flow rates, unlike a traditional small volume UV detector. The methods, applications, and theoretical insights in this work can be used to improve the mass spectrometric results of any LC-MS system.
Zobrazit více v PubMed
Wörheide M. A., Krumsiek J., Kastenmüller G., Arnold M.. Multi-Omics Integration in Biomedical Research – A Metabolomics-Centric Review. Anal. Chim. Acta. 2021;1141:144–162. doi: 10.1016/j.aca.2020.10.038. PubMed DOI PMC
Hasin Y., Seldin M., Lusis A.. Multi-Omics Approaches to Disease. Genome Biol. 2017;18(1):83. doi: 10.1186/s13059-017-1215-1. PubMed DOI PMC
Liu Y., Wu Z., Armstrong D. W., Wolosker H., Zheng Y.. Detection and Analysis of Chiral Molecules as Disease Biomarkers. Nat. Rev. Chem. 2023;7:355–373. doi: 10.1038/s41570-023-00476-z. PubMed DOI PMC
da Veiga Leprevost F., Haynes S. E., Avtonomov D. M., Chang H.-Y., Shanmugam A. K., Mellacheruvu D., Kong A. T., Nesvizhskii A. I.. Philosopher: A Versatile Toolkit for Shotgun Proteomics Data Analysis. Nat. Methods. 2020;17:869–872. doi: 10.1038/s41592-020-0912-y. PubMed DOI PMC
Cui M., Cheng C., Zhang L.. High-Throughput Proteomics: A Methodological Mini-Review. Lab. Invest. 2022;102(11):1170–1181. doi: 10.1038/s41374-022-00830-7. PubMed DOI PMC
Dupree E. J., Jayathirtha M., Yorkey H., Mihasan M., Petre B. A., Darie C. C.. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes. 2020;8(3):14. doi: 10.3390/proteomes8030014. PubMed DOI PMC
Alarcon-Barrera J. C., Kostidis S., Ondo-Mendez A., Giera M.. Recent Advances in Metabolomics Analysis for Early Drug Development. Drug Discovery Today. 2022;27(6):1763–1773. doi: 10.1016/j.drudis.2022.02.018. PubMed DOI
Bauermeister A., Mannochio-Russo H., Costa-Lotufo L. V., Jarmusch A. K., Dorrestein P. C.. Mass Spectrometry-Based Metabolomics in Microbiome Investigations. Nat. Rev. Microbiol. 2022;20(3):143–160. doi: 10.1038/s41579-021-00621-9. PubMed DOI PMC
Sindelar M., Patti G. J.. Chemical Discovery in the Era of Metabolomics. J. Am. Chem. Soc. 2020;142(20):9097–9105. doi: 10.1021/jacs.9b13198. PubMed DOI PMC
Hellinger R., Sigurdsson A., Wu W., Romanova E. V., Li L., Sweedler J. V., Süssmuth R. D., Gruber C. W.. Peptidomics. Nat. Rev. Methods Primers. 2023;3(1):25. doi: 10.1038/s43586-023-00205-2. PubMed DOI PMC
Foreman R. E., George A. L., Reimann F., Gribble F. M., Kay R. G.. Peptidomics: A Review of Clinical Applications and Methodologies. J. Proteome Res. 2021;20(8):3782–3797. doi: 10.1021/acs.jproteome.1c00295. PubMed DOI
Andersen J. S., Mann M.. Functional Genomics by Mass Spectrometry. FEBS Lett. 2000;480(1):25–31. doi: 10.1016/S0014-5793(00)01773-7. PubMed DOI
Gstaiger M., Aebersold R.. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nat. Rev. Genet. 2009;10(9):617–627. doi: 10.1038/nrg2633. PubMed DOI
Lenčo J., Jadeja S., Naplekov D. K., Krokhin O. V., Khalikova M. A., Chocholouš P., Urban J., Broeckhoven K., Nováková L., Švec F.. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J. Proteome Res. 2022;21(12):2846–2892. doi: 10.1021/acs.jproteome.2c00407. PubMed DOI
Fournier M. L., Gilmore J. M., Martin-Brown S. A., Washburn M. P.. Multidimensional Separations-Based Shotgun Proteomics. Chem. Rev. 2007;107(8):3654–3686. doi: 10.1021/cr068279a. PubMed DOI
Wolters D. A., Washburn M. P., Yates J. R.. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 2001;73(23):5683–5690. doi: 10.1021/ac010617e. PubMed DOI
Sternberg, J. C. Extra Column Contributions to Chromatgraphic Band Broadening. In Advances in Chromatography; Giddings, J. C. ; Keller, R. A. , Eds.; Marcel Dekker Inc: New York, NY, 1966; pp 205–270.
Desmet G., Broeckhoven K.. Extra-Column Band Broadening Effects in Contemporary Liquid Chromatography: Causes and Solutions. TrAC Trends Anal. Chem. 2019;119:115619. doi: 10.1016/j.trac.2019.115619. DOI
Bienaymé I.-J.. Considérations à l′appui de La Découverte de Laplace Sur La Loi de Probabilité Dans La Méthode Des Moindres Carrés. J. Anal. Math. 1867;12:158–176.
Wahab M. F., Patel D. C., Wimalasinghe R. M., Armstrong D. W.. Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns. Anal. Chem. 2017;89(16):8177–8191. doi: 10.1021/acs.analchem.7b00931. PubMed DOI
Perchepied S., Ritchie H., Desmet G., Eeltink S.. Insights in Column Packing Processes of Narrow Bore and Capillary-Scale Columns: Methodologies, Driving Forces, and Separation Performance – A Tutorial Review. Anal. Chim. Acta. 2022;1235:340563. doi: 10.1016/j.aca.2022.340563. PubMed DOI
Barhate C. L., Wahab M. F., Breitbach Z. S., Bell D. S., Armstrong D. W.. High Efficiency, Narrow Particle Size Distribution, Sub-2 Mm Based Macrocyclic Glycopeptide Chiral Stationary Phases in HPLC and SFC. Anal. Chim. Acta. 2015;898:128–137. doi: 10.1016/j.aca.2015.09.048. PubMed DOI
Gritti F., Guiochon G.. The Current Revolution in Column Technology: How It Began, Where Is It Going? J. Chromatogr. A. 2012;1228:2–19. doi: 10.1016/j.chroma.2011.07.014. PubMed DOI
Gritti F., Guiochon G.. Facts and Legends on Columns Packed with Sub-3-Mm Core-Shell Particles. LCGC North Am. 2012;30(7):586–595.
Gritti F., Cavazzini A., Marchetti N., Guiochon G.. Comparison between the Efficiencies of Columns Packed with Fully and Partially Porous C18-Bonded Silica Materials. J. Chromatogr. A. 2007;1157(1–2):289–303. doi: 10.1016/j.chroma.2007.05.030. PubMed DOI
Handlovic T. T., Wahab M. F., Roy S., Brown R. E., Armstrong D. W.. Automated Regularized Deconvolution for Eliminating Extra-Column Effects in Fast High-Efficiency Separations. Anal. Chem. 2023;95(29):11028–11036. doi: 10.1021/acs.analchem.3c01279. PubMed DOI
Gritti F., Meyyappan S., Leveille W., Hill J.. Improved Performance of Ultrahigh-Pressure Liquid Chromatography–Mass Spectrometry (UHPLC–MS) Hyphenated Systems. LCGC Europe. 2022;35(07):285–293.
Rodriguez-Aller M., Gurny R., Veuthey J.-L., Guillarme D.. Coupling Ultra High-Pressure Liquid Chromatography with Mass Spectrometry: Constraints and Possible Applications. J. Chromatogr. A. 2013;1292:2–18. doi: 10.1016/j.chroma.2012.09.061. PubMed DOI
Buckenmaier S., Miller C. A., van de Goor T., Dittmann M. M.. Instrument Contributions to Resolution and Sensitivity in Ultra High Performance Liquid Chromatography Using Small Bore Columns: Comparison of Diode Array and Triple Quadrupole Mass Spectrometry Detection. J. Chromatogr. A. 2015;1377:64–74. doi: 10.1016/j.chroma.2014.11.086. PubMed DOI
Grata E., Guillarme D., Glauser G., Boccard J., Carrupt P.-A., Veuthey J.-L., Rudaz S., Wolfender J.-L.. Metabolite Profiling of Plant Extracts by Ultra-High-Pressure Liquid Chromatography at Elevated Temperature Coupled to Time-of-Flight Mass Spectrometry. J. Chromatogr. A. 2009;1216(30):5660–5668. doi: 10.1016/j.chroma.2009.05.069. PubMed DOI
Spaggiari D., Fekete S., Eugster P. J., Veuthey J. L., Geiser L., Rudaz S., Guillarme D.. Contribution of Various Types of Liquid Chromatography-Mass Spectrometry Instruments to Band Broadening in Fast Analysis. J. Chromatogr. A. 2013;1310:45–55. doi: 10.1016/j.chroma.2013.08.001. PubMed DOI
Bian Y., Zheng R., Bayer F. P., Wong C., Chang Y.-C., Meng C., Zolg D. P., Reinecke M., Zecha J., Wiechmann S., Heinzlmeir S., Scherr J., Hemmer B., Baynham M., Gingras A.-C., Boychenko O., Kuster B.. Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC–MS/MS. Nat. Commun. 2020;11(1):157. doi: 10.1038/s41467-019-13973-x. PubMed DOI PMC
Wilm M., Mann M.. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996;68(1):1–8. doi: 10.1021/ac9509519. PubMed DOI
Gatlin C. L., Kleemann G. R., Hays L. G., Link A. J., Yates J. R.. Protein Identification at the Low Femtomole Level from Silver-Stained Gels Using a New Fritless Electrospray Interface for Liquid Chromatography–Microspray and Nanospray Mass Spectrometry. Anal. Biochem. 1998;263(1):93–101. doi: 10.1006/abio.1998.2809. PubMed DOI
Tang K., Page J. S., Smith R. D.. Charge Competition and the Linear Dynamic Range of Detection in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004;15(10):1416–1423. doi: 10.1016/j.jasms.2004.04.034. PubMed DOI PMC
Gritti F., Wahab F.. Extraction of Intrinsic Column Peak Profiles of Narrow-Bore and Microbore Columns by Peak Deconvolution Methods. Anal. Chim. Acta. 2021;1180:338851. doi: 10.1016/j.aca.2021.338851. PubMed DOI
Vanderlinden K., Broeckhoven K., Vanderheyden Y., Desmet G.. Effect of Pre- and Post-Column Band Broadening on the Performance of High-Speed Chromatography Columns under Isocratic and Gradient Conditions. J. Chromatogr. A. 2016;1442:73–82. doi: 10.1016/j.chroma.2016.03.016. PubMed DOI
Zhu K., Pursch M., Huygens B., Eeltink S., Desmet G.. Minimize Precolumn Band Broadening with Immiscible Solvent Sandwich Injection. Anal. Chem. 2023;95(41):15311–15317. doi: 10.1021/acs.analchem.3c02754. PubMed DOI
Annesley T. M.. Ion Suppression in Mass Spectrometry. Clin Chem. 2003;49(7):1041–1044. doi: 10.1373/49.7.1041. PubMed DOI
Wagen C. C., McMinn S. E., Kwan E. E., Jacobsen E. N.. Screening for Generality in Asymmetric Catalysis. Nature. 2022;610(7933):680–686. doi: 10.1038/s41586-022-05263-2. PubMed DOI PMC
Vanderheyden Y., Broeckhoven K., Desmet G.. Peak Deconvolution to Correctly Assess the Band Broadening of Chromatographic Columns. J. Chromatogr. A. 2016;1465:126–142. doi: 10.1016/j.chroma.2016.08.058. PubMed DOI
Hildonen S., Halvorsen T. G., Reubsaet L.. Why Less Is More When Generating Tryptic Peptides in Bottom-up Proteomics. Proteomics. 2014;14(17–18):2031–2041. doi: 10.1002/pmic.201300479. PubMed DOI
Gritti F., Sanchez C. A., Farkas T., Guiochon G.. Achieving the Full Performance of Highly Efficient Columns by Optimizing Conventional Benchmark High-Performance Liquid Chromatography Instruments. J. Chromatogr. A. 2010;1217(18):3000–3012. doi: 10.1016/j.chroma.2010.02.044. PubMed DOI
Schmid R., Heuckeroth S., Korf A., Smirnov A., Myers O., Dyrlund T. S., Bushuiev R., Murray K. J., Hoffmann N., Lu M., Sarvepalli A., Zhang Z., Fleischauer M., Dührkop K., Wesner M., Hoogstra S. J., Rudt E., Mokshyna O., Brungs C., Ponomarov K., Mutabdžija L., Damiani T., Pudney C. J., Earll M., Helmer P. O., Fallon T. R., Schulze T., Rivas-Ubach A., Bilbao A., Richter H., Nothias L.-F., Wang M., Orešič M., Weng J.-K., Böcker S., Jeibmann A., Hayen H., Karst U., Dorrestein P. C., Petras D., Du X., Pluskal T.. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023;41(4):447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC
Gritti F., Guiochon G.. Accurate Measurements of the True Column Efficiency and of the Instrument Band Broadening Contributions in the Presence of a Chromatographic Column. J. Chromatogr. A. 2014;1327:49–56. doi: 10.1016/j.chroma.2013.12.003. PubMed DOI
Rundlett K. L., Armstrong D. W.. Mechanism of Signal Suppression by Anionic Surfactants in Capillary Electrophoresis–Electrospray Ionization Mass Spectrometry. Anal. Chem. 1996;68(19):3493–3497. doi: 10.1021/ac960472p. PubMed DOI
Breitbach Z. S., Wanigasekara E., Dodbiba E., Schug K. A., Armstrong D. W.. Mechanisms of ESI-MS Selectivity and Sensitivity Enhancements When Detecting Anions in the Positive Mode Using Cationic Pairing Agents. Anal. Chem. 2010;82(21):9066–9073. doi: 10.1021/ac102115w. PubMed DOI
Jiang P., Wu D., Lucy C. A.. Determination of Void Volume in Normal Phase Liquid Chromatography. J. Chromatogr. A. 2014;1324:63–70. doi: 10.1016/j.chroma.2013.11.019. PubMed DOI
Gritti F., Smith K.. Harmonization of Experimental Methods Used to Measure the True Hold-Up Volume of Liquid Chromatography Columns. LCGC North Am. 2023:28–33. doi: 10.56530/lcgc.na.ev3577e6. DOI
Horvath C., Lin H.-J.. Movement and Band Spreading of Unsorbed Solutes in Liquid Chromatography. J. Chromatogr. A. 1976;126:401–420. doi: 10.1016/S0021-9673(01)84088-7. DOI
Krstulovic A. M., Colin H., Guiochon G.. Comparison of Methods Used for the Determination of Void Volume in Reversed-Phase Liquid Chromatography. Anal. Chem. 1982;54(14):2438–2443. doi: 10.1021/ac00251a009. DOI
Moussa A., Broeckhoven K., Desmet G.. Fundamental Investigation of the Dispersion Caused by a Change in Diameter in Nano Liquid Chromatography Capillary Tubing. J. Chromatogr. A. 2023;1688:463719. doi: 10.1016/j.chroma.2022.463719. PubMed DOI
Datta S., Ghosal S.. Characterizing Dispersion in Microfluidic Channels. Lab Chip. 2009;9:2537–2550. doi: 10.1039/b822948c. PubMed DOI PMC
Evans C. E., McGuffin V. L.. Dual On-Column Fluorescence Detection Scheme for Characterization of Chromatographic Peaks. Anal. Chem. 1988;60(6):573–577. doi: 10.1021/ac00157a016. DOI
Lauer H. H., Rozing G. P.. The Selection of Optimum Conditions in HPLC I. The Determination of External Band Spreading in LC Instruments. Chromatographia. 1981;14(11):641–647. doi: 10.1007/BF02291104. DOI
Gritti F., Guiochon G.. Effect of the Pressure on Pre-Column Sample Dispersion Theory, Experiments, and Practical Consequences. J. Chromatogr. A. 2014;1352:20–28. doi: 10.1016/j.chroma.2014.04.089. PubMed DOI
Zeng W., Bateman K. P.. Quantitative LC-MS/MS. 1. Impact of Points across a Peak on the Accuracy and Precision of Peak Area Measurements. J. Am. Soc. Mass Spectrom. 2023;34(6):1136–1144. doi: 10.1021/jasms.3c00077. PubMed DOI
Wahab M. F., Dasgupta P. K., Kadjo A. F., Armstrong D. W.. Sampling Frequency, Response Times and Embedded Signal Filtration in Fast, High Efficiency Liquid Chromatography : A Tutorial. Anal. Chim. Acta. 2016;907:31–44. doi: 10.1016/j.aca.2015.11.043. PubMed DOI
Shannon C. E.. Communication in the Presence of Noise. Proc. IRE. 1949;37(1):10–21. doi: 10.1109/JRPROC.1949.232969. DOI
Wahab, M. F. ; Sajeevan, S. J. S. ; Armstrong, D. W. . Myths and Facts: Sampling Frequency, Response Time, and Extra-Column Effects in HPLC. https://jascoinc.com/applications/myths-and-facts-sampling-frequency-response-time-and-extra-column-effects-in-hplc/. (accessed October 31, 2024).
Dasgupta P. K., Chen Y., Serrano C. A., Guiochon G., Liu H., Fairchild J. N., Shalliker R. A.. Black Box Linearization for Greater Linear Dynamic Range: The Effect of Power Transforms on the Representation of Data. Anal. Chem. 2010;82(24):10143–10150. doi: 10.1021/ac102242t. PubMed DOI
Wahab M. F., Gritti F., Haver T. C. O., Hellinghausen G., Armstrong D. W.. Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering Areas from Partially Resolved Peaks. Chromatographia. 2019;82(1):211–220. doi: 10.1007/s10337-018-3607-0. DOI
Handlovic T. T., Roy D., Barnhart W. W., Ahmad I. A. H.. Role of the Power Function Value in Linearity and Universality for Charged Aerosol Detectors: Theoretical Elucidations from a Validated Model. Anal. Chem. 2024;96(40):16045–16052. doi: 10.1021/acs.analchem.4c03714. PubMed DOI