Implications of Extra-column Effects for Targeted or Untargeted Microflow LC-MS

. 2025 Jun 18 ; 5 (3) : 332-344. [epub] 20250408

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40556882

Mass spectrometry (MS) has changed our understanding of health, disease, and the environment through untargeted analyses where entire molecular classes are investigated. These techniques generate huge amounts of data which when processed by statistical tools can identify important molecular features or biomarkers. The complexities of these samples are not compatible with direct introduction to the MS system and require a high-resolution separation step, typically low flow liquid chromatography (LC), prior to MS. LC columns that can produce adequate linear velocities at these low flow rates are small in volume making their results susceptible to resolution loss in extra-column volumes. Here, we investigate the implications of the extra-column effects in five LC-MS systems with triple quadrupole and orbitrap mass analyzers. The extra-column volume of these systems in their standard configuration ranged from 26.4 to 78.1 μL which we reduced to 9.57 to 18.7 μL by optimizing the fluidics. The effects of this volume reduction were assessed by studying a hydrolyzed protein sample in a proteomics environment where the intensity of the largest MS peak was improved by 1.8-3.8×. Additionally, the number of molecular features detected in the protein sample improved by up to 7.5×. The relationship between extra-column volumetric variance and flow rate shows that broadening will become much larger for MS detectors at higher flow rates, unlike a traditional small volume UV detector. The methods, applications, and theoretical insights in this work can be used to improve the mass spectrometric results of any LC-MS system.

Zobrazit více v PubMed

Wörheide M. A., Krumsiek J., Kastenmüller G., Arnold M.. Multi-Omics Integration in Biomedical Research – A Metabolomics-Centric Review. Anal. Chim. Acta. 2021;1141:144–162. doi: 10.1016/j.aca.2020.10.038. PubMed DOI PMC

Hasin Y., Seldin M., Lusis A.. Multi-Omics Approaches to Disease. Genome Biol. 2017;18(1):83. doi: 10.1186/s13059-017-1215-1. PubMed DOI PMC

Liu Y., Wu Z., Armstrong D. W., Wolosker H., Zheng Y.. Detection and Analysis of Chiral Molecules as Disease Biomarkers. Nat. Rev. Chem. 2023;7:355–373. doi: 10.1038/s41570-023-00476-z. PubMed DOI PMC

da Veiga Leprevost F., Haynes S. E., Avtonomov D. M., Chang H.-Y., Shanmugam A. K., Mellacheruvu D., Kong A. T., Nesvizhskii A. I.. Philosopher: A Versatile Toolkit for Shotgun Proteomics Data Analysis. Nat. Methods. 2020;17:869–872. doi: 10.1038/s41592-020-0912-y. PubMed DOI PMC

Cui M., Cheng C., Zhang L.. High-Throughput Proteomics: A Methodological Mini-Review. Lab. Invest. 2022;102(11):1170–1181. doi: 10.1038/s41374-022-00830-7. PubMed DOI PMC

Dupree E. J., Jayathirtha M., Yorkey H., Mihasan M., Petre B. A., Darie C. C.. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes. 2020;8(3):14. doi: 10.3390/proteomes8030014. PubMed DOI PMC

Alarcon-Barrera J. C., Kostidis S., Ondo-Mendez A., Giera M.. Recent Advances in Metabolomics Analysis for Early Drug Development. Drug Discovery Today. 2022;27(6):1763–1773. doi: 10.1016/j.drudis.2022.02.018. PubMed DOI

Bauermeister A., Mannochio-Russo H., Costa-Lotufo L. V., Jarmusch A. K., Dorrestein P. C.. Mass Spectrometry-Based Metabolomics in Microbiome Investigations. Nat. Rev. Microbiol. 2022;20(3):143–160. doi: 10.1038/s41579-021-00621-9. PubMed DOI PMC

Sindelar M., Patti G. J.. Chemical Discovery in the Era of Metabolomics. J. Am. Chem. Soc. 2020;142(20):9097–9105. doi: 10.1021/jacs.9b13198. PubMed DOI PMC

Hellinger R., Sigurdsson A., Wu W., Romanova E. V., Li L., Sweedler J. V., Süssmuth R. D., Gruber C. W.. Peptidomics. Nat. Rev. Methods Primers. 2023;3(1):25. doi: 10.1038/s43586-023-00205-2. PubMed DOI PMC

Foreman R. E., George A. L., Reimann F., Gribble F. M., Kay R. G.. Peptidomics: A Review of Clinical Applications and Methodologies. J. Proteome Res. 2021;20(8):3782–3797. doi: 10.1021/acs.jproteome.1c00295. PubMed DOI

Andersen J. S., Mann M.. Functional Genomics by Mass Spectrometry. FEBS Lett. 2000;480(1):25–31. doi: 10.1016/S0014-5793(00)01773-7. PubMed DOI

Gstaiger M., Aebersold R.. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nat. Rev. Genet. 2009;10(9):617–627. doi: 10.1038/nrg2633. PubMed DOI

Lenčo J., Jadeja S., Naplekov D. K., Krokhin O. V., Khalikova M. A., Chocholouš P., Urban J., Broeckhoven K., Nováková L., Švec F.. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J. Proteome Res. 2022;21(12):2846–2892. doi: 10.1021/acs.jproteome.2c00407. PubMed DOI

Fournier M. L., Gilmore J. M., Martin-Brown S. A., Washburn M. P.. Multidimensional Separations-Based Shotgun Proteomics. Chem. Rev. 2007;107(8):3654–3686. doi: 10.1021/cr068279a. PubMed DOI

Wolters D. A., Washburn M. P., Yates J. R.. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 2001;73(23):5683–5690. doi: 10.1021/ac010617e. PubMed DOI

Sternberg, J. C. Extra Column Contributions to Chromatgraphic Band Broadening. In Advances in Chromatography; Giddings, J. C. ; Keller, R. A. , Eds.; Marcel Dekker Inc: New York, NY, 1966; pp 205–270.

Desmet G., Broeckhoven K.. Extra-Column Band Broadening Effects in Contemporary Liquid Chromatography: Causes and Solutions. TrAC Trends Anal. Chem. 2019;119:115619. doi: 10.1016/j.trac.2019.115619. DOI

Bienaymé I.-J.. Considérations à l′appui de La Découverte de Laplace Sur La Loi de Probabilité Dans La Méthode Des Moindres Carrés. J. Anal. Math. 1867;12:158–176.

Wahab M. F., Patel D. C., Wimalasinghe R. M., Armstrong D. W.. Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns. Anal. Chem. 2017;89(16):8177–8191. doi: 10.1021/acs.analchem.7b00931. PubMed DOI

Perchepied S., Ritchie H., Desmet G., Eeltink S.. Insights in Column Packing Processes of Narrow Bore and Capillary-Scale Columns: Methodologies, Driving Forces, and Separation Performance – A Tutorial Review. Anal. Chim. Acta. 2022;1235:340563. doi: 10.1016/j.aca.2022.340563. PubMed DOI

Barhate C. L., Wahab M. F., Breitbach Z. S., Bell D. S., Armstrong D. W.. High Efficiency, Narrow Particle Size Distribution, Sub-2 Mm Based Macrocyclic Glycopeptide Chiral Stationary Phases in HPLC and SFC. Anal. Chim. Acta. 2015;898:128–137. doi: 10.1016/j.aca.2015.09.048. PubMed DOI

Gritti F., Guiochon G.. The Current Revolution in Column Technology: How It Began, Where Is It Going? J. Chromatogr. A. 2012;1228:2–19. doi: 10.1016/j.chroma.2011.07.014. PubMed DOI

Gritti F., Guiochon G.. Facts and Legends on Columns Packed with Sub-3-Mm Core-Shell Particles. LCGC North Am. 2012;30(7):586–595.

Gritti F., Cavazzini A., Marchetti N., Guiochon G.. Comparison between the Efficiencies of Columns Packed with Fully and Partially Porous C18-Bonded Silica Materials. J. Chromatogr. A. 2007;1157(1–2):289–303. doi: 10.1016/j.chroma.2007.05.030. PubMed DOI

Handlovic T. T., Wahab M. F., Roy S., Brown R. E., Armstrong D. W.. Automated Regularized Deconvolution for Eliminating Extra-Column Effects in Fast High-Efficiency Separations. Anal. Chem. 2023;95(29):11028–11036. doi: 10.1021/acs.analchem.3c01279. PubMed DOI

Gritti F., Meyyappan S., Leveille W., Hill J.. Improved Performance of Ultrahigh-Pressure Liquid Chromatography–Mass Spectrometry (UHPLC–MS) Hyphenated Systems. LCGC Europe. 2022;35(07):285–293.

Rodriguez-Aller M., Gurny R., Veuthey J.-L., Guillarme D.. Coupling Ultra High-Pressure Liquid Chromatography with Mass Spectrometry: Constraints and Possible Applications. J. Chromatogr. A. 2013;1292:2–18. doi: 10.1016/j.chroma.2012.09.061. PubMed DOI

Buckenmaier S., Miller C. A., van de Goor T., Dittmann M. M.. Instrument Contributions to Resolution and Sensitivity in Ultra High Performance Liquid Chromatography Using Small Bore Columns: Comparison of Diode Array and Triple Quadrupole Mass Spectrometry Detection. J. Chromatogr. A. 2015;1377:64–74. doi: 10.1016/j.chroma.2014.11.086. PubMed DOI

Grata E., Guillarme D., Glauser G., Boccard J., Carrupt P.-A., Veuthey J.-L., Rudaz S., Wolfender J.-L.. Metabolite Profiling of Plant Extracts by Ultra-High-Pressure Liquid Chromatography at Elevated Temperature Coupled to Time-of-Flight Mass Spectrometry. J. Chromatogr. A. 2009;1216(30):5660–5668. doi: 10.1016/j.chroma.2009.05.069. PubMed DOI

Spaggiari D., Fekete S., Eugster P. J., Veuthey J. L., Geiser L., Rudaz S., Guillarme D.. Contribution of Various Types of Liquid Chromatography-Mass Spectrometry Instruments to Band Broadening in Fast Analysis. J. Chromatogr. A. 2013;1310:45–55. doi: 10.1016/j.chroma.2013.08.001. PubMed DOI

Bian Y., Zheng R., Bayer F. P., Wong C., Chang Y.-C., Meng C., Zolg D. P., Reinecke M., Zecha J., Wiechmann S., Heinzlmeir S., Scherr J., Hemmer B., Baynham M., Gingras A.-C., Boychenko O., Kuster B.. Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC–MS/MS. Nat. Commun. 2020;11(1):157. doi: 10.1038/s41467-019-13973-x. PubMed DOI PMC

Wilm M., Mann M.. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996;68(1):1–8. doi: 10.1021/ac9509519. PubMed DOI

Gatlin C. L., Kleemann G. R., Hays L. G., Link A. J., Yates J. R.. Protein Identification at the Low Femtomole Level from Silver-Stained Gels Using a New Fritless Electrospray Interface for Liquid Chromatography–Microspray and Nanospray Mass Spectrometry. Anal. Biochem. 1998;263(1):93–101. doi: 10.1006/abio.1998.2809. PubMed DOI

Tang K., Page J. S., Smith R. D.. Charge Competition and the Linear Dynamic Range of Detection in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004;15(10):1416–1423. doi: 10.1016/j.jasms.2004.04.034. PubMed DOI PMC

Gritti F., Wahab F.. Extraction of Intrinsic Column Peak Profiles of Narrow-Bore and Microbore Columns by Peak Deconvolution Methods. Anal. Chim. Acta. 2021;1180:338851. doi: 10.1016/j.aca.2021.338851. PubMed DOI

Vanderlinden K., Broeckhoven K., Vanderheyden Y., Desmet G.. Effect of Pre- and Post-Column Band Broadening on the Performance of High-Speed Chromatography Columns under Isocratic and Gradient Conditions. J. Chromatogr. A. 2016;1442:73–82. doi: 10.1016/j.chroma.2016.03.016. PubMed DOI

Zhu K., Pursch M., Huygens B., Eeltink S., Desmet G.. Minimize Precolumn Band Broadening with Immiscible Solvent Sandwich Injection. Anal. Chem. 2023;95(41):15311–15317. doi: 10.1021/acs.analchem.3c02754. PubMed DOI

Annesley T. M.. Ion Suppression in Mass Spectrometry. Clin Chem. 2003;49(7):1041–1044. doi: 10.1373/49.7.1041. PubMed DOI

Wagen C. C., McMinn S. E., Kwan E. E., Jacobsen E. N.. Screening for Generality in Asymmetric Catalysis. Nature. 2022;610(7933):680–686. doi: 10.1038/s41586-022-05263-2. PubMed DOI PMC

Vanderheyden Y., Broeckhoven K., Desmet G.. Peak Deconvolution to Correctly Assess the Band Broadening of Chromatographic Columns. J. Chromatogr. A. 2016;1465:126–142. doi: 10.1016/j.chroma.2016.08.058. PubMed DOI

Hildonen S., Halvorsen T. G., Reubsaet L.. Why Less Is More When Generating Tryptic Peptides in Bottom-up Proteomics. Proteomics. 2014;14(17–18):2031–2041. doi: 10.1002/pmic.201300479. PubMed DOI

Gritti F., Sanchez C. A., Farkas T., Guiochon G.. Achieving the Full Performance of Highly Efficient Columns by Optimizing Conventional Benchmark High-Performance Liquid Chromatography Instruments. J. Chromatogr. A. 2010;1217(18):3000–3012. doi: 10.1016/j.chroma.2010.02.044. PubMed DOI

Schmid R., Heuckeroth S., Korf A., Smirnov A., Myers O., Dyrlund T. S., Bushuiev R., Murray K. J., Hoffmann N., Lu M., Sarvepalli A., Zhang Z., Fleischauer M., Dührkop K., Wesner M., Hoogstra S. J., Rudt E., Mokshyna O., Brungs C., Ponomarov K., Mutabdžija L., Damiani T., Pudney C. J., Earll M., Helmer P. O., Fallon T. R., Schulze T., Rivas-Ubach A., Bilbao A., Richter H., Nothias L.-F., Wang M., Orešič M., Weng J.-K., Böcker S., Jeibmann A., Hayen H., Karst U., Dorrestein P. C., Petras D., Du X., Pluskal T.. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023;41(4):447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC

Gritti F., Guiochon G.. Accurate Measurements of the True Column Efficiency and of the Instrument Band Broadening Contributions in the Presence of a Chromatographic Column. J. Chromatogr. A. 2014;1327:49–56. doi: 10.1016/j.chroma.2013.12.003. PubMed DOI

Rundlett K. L., Armstrong D. W.. Mechanism of Signal Suppression by Anionic Surfactants in Capillary Electrophoresis–Electrospray Ionization Mass Spectrometry. Anal. Chem. 1996;68(19):3493–3497. doi: 10.1021/ac960472p. PubMed DOI

Breitbach Z. S., Wanigasekara E., Dodbiba E., Schug K. A., Armstrong D. W.. Mechanisms of ESI-MS Selectivity and Sensitivity Enhancements When Detecting Anions in the Positive Mode Using Cationic Pairing Agents. Anal. Chem. 2010;82(21):9066–9073. doi: 10.1021/ac102115w. PubMed DOI

Jiang P., Wu D., Lucy C. A.. Determination of Void Volume in Normal Phase Liquid Chromatography. J. Chromatogr. A. 2014;1324:63–70. doi: 10.1016/j.chroma.2013.11.019. PubMed DOI

Gritti F., Smith K.. Harmonization of Experimental Methods Used to Measure the True Hold-Up Volume of Liquid Chromatography Columns. LCGC North Am. 2023:28–33. doi: 10.56530/lcgc.na.ev3577e6. DOI

Horvath C., Lin H.-J.. Movement and Band Spreading of Unsorbed Solutes in Liquid Chromatography. J. Chromatogr. A. 1976;126:401–420. doi: 10.1016/S0021-9673(01)84088-7. DOI

Krstulovic A. M., Colin H., Guiochon G.. Comparison of Methods Used for the Determination of Void Volume in Reversed-Phase Liquid Chromatography. Anal. Chem. 1982;54(14):2438–2443. doi: 10.1021/ac00251a009. DOI

Moussa A., Broeckhoven K., Desmet G.. Fundamental Investigation of the Dispersion Caused by a Change in Diameter in Nano Liquid Chromatography Capillary Tubing. J. Chromatogr. A. 2023;1688:463719. doi: 10.1016/j.chroma.2022.463719. PubMed DOI

Datta S., Ghosal S.. Characterizing Dispersion in Microfluidic Channels. Lab Chip. 2009;9:2537–2550. doi: 10.1039/b822948c. PubMed DOI PMC

Evans C. E., McGuffin V. L.. Dual On-Column Fluorescence Detection Scheme for Characterization of Chromatographic Peaks. Anal. Chem. 1988;60(6):573–577. doi: 10.1021/ac00157a016. DOI

Lauer H. H., Rozing G. P.. The Selection of Optimum Conditions in HPLC I. The Determination of External Band Spreading in LC Instruments. Chromatographia. 1981;14(11):641–647. doi: 10.1007/BF02291104. DOI

Gritti F., Guiochon G.. Effect of the Pressure on Pre-Column Sample Dispersion Theory, Experiments, and Practical Consequences. J. Chromatogr. A. 2014;1352:20–28. doi: 10.1016/j.chroma.2014.04.089. PubMed DOI

Zeng W., Bateman K. P.. Quantitative LC-MS/MS. 1. Impact of Points across a Peak on the Accuracy and Precision of Peak Area Measurements. J. Am. Soc. Mass Spectrom. 2023;34(6):1136–1144. doi: 10.1021/jasms.3c00077. PubMed DOI

Wahab M. F., Dasgupta P. K., Kadjo A. F., Armstrong D. W.. Sampling Frequency, Response Times and Embedded Signal Filtration in Fast, High Efficiency Liquid Chromatography : A Tutorial. Anal. Chim. Acta. 2016;907:31–44. doi: 10.1016/j.aca.2015.11.043. PubMed DOI

Shannon C. E.. Communication in the Presence of Noise. Proc. IRE. 1949;37(1):10–21. doi: 10.1109/JRPROC.1949.232969. DOI

Wahab, M. F. ; Sajeevan, S. J. S. ; Armstrong, D. W. . Myths and Facts: Sampling Frequency, Response Time, and Extra-Column Effects in HPLC. https://jascoinc.com/applications/myths-and-facts-sampling-frequency-response-time-and-extra-column-effects-in-hplc/. (accessed October 31, 2024).

Dasgupta P. K., Chen Y., Serrano C. A., Guiochon G., Liu H., Fairchild J. N., Shalliker R. A.. Black Box Linearization for Greater Linear Dynamic Range: The Effect of Power Transforms on the Representation of Data. Anal. Chem. 2010;82(24):10143–10150. doi: 10.1021/ac102242t. PubMed DOI

Wahab M. F., Gritti F., Haver T. C. O., Hellinghausen G., Armstrong D. W.. Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering Areas from Partially Resolved Peaks. Chromatographia. 2019;82(1):211–220. doi: 10.1007/s10337-018-3607-0. DOI

Handlovic T. T., Roy D., Barnhart W. W., Ahmad I. A. H.. Role of the Power Function Value in Linearity and Universality for Charged Aerosol Detectors: Theoretical Elucidations from a Validated Model. Anal. Chem. 2024;96(40):16045–16052. doi: 10.1021/acs.analchem.4c03714. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...