Effects of Short-Term Heat Stress on the Development, Reproduction, and Demographic Parameters of Phytoseiulus persimilis (Acari: Phytoseiidae)

. 2025 Jun 05 ; 16 (6) : . [epub] 20250605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40559026

Grantová podpora
RVO 60077344 Czech Academy of Sciences, Biology Centre

Temperature is a critical factor affecting the development and population dynamics of many organisms. An organism's ability to withstand extreme temperature events, such as heat waves, will become increasingly important as the severity, duration, and frequency of these events continue to rise worldwide due to global warming. Knowledge on the effects of heat stress on both pests and their natural enemies will thus be crucial for keeping biological control and pest control programs effective in future. This research aimed to study the effect of short-term heat stress on the predatory mite Phytoseiulus persimilis, which is one of the important natural enemies utilized as a biocontrol agent against spider mites such as Tetranychus urticae. The experiments assessed the immature developmental time of P. persimilis after a four-hour incubation of eggs at high temperatures, namely 36, 38, 40, and 42 °C, as well as 85 ± 5% RH and a 16:8 h photoperiod (L:D). After adult females emerged, they were exposed to the same conditions again and the population parameters were monitored. The results demonstrated that the immature development time decreased as temperature increased, with the shortest development duration of 5.30 days seen in eggs exposed to 40 °C, while the eggs exposed to 42 °C did not hatch. Female and male adult longevity decreased significantly as the temperature increased. Fecundity, the adult pre-ovipositional period, and the total pre-ovipositional period were lowest following the 40 °C treatment. The population parameters of P. persimilis, including r and λ, reached their highest values in mites treated at 36 °C, and were significantly higher than in the control group. Addressing these challenges through targeted research and adaptive management is essential to sustaining the efficiency of P. persimilis in biocontrol programs, particularly in the context of global climate change.

Zobrazit více v PubMed

Jerbi-Elayed M., Lebdi-Grissa K., Foray V., Muratori F., Hance T. Using Multiple Traits to Estimate the Effects of Heat Shock on the Fitness of Aphidius colemani. Entomol. Exp. Appl. 2015;155:18–27. doi: 10.1111/eea.12273. DOI

Jin H.-F., Fu B.-L., Qiu H.-Y., Yang S.-Y., Zhou S.-H., Ma X.-T., Li S.-G., Zhang F.-P., Tang L.-D., Liu K. Effects of High Temperature Stress on the Biology and Predatory Behavior of Menochilus sexmaculates. Chin. J. Appl. Entomol. 2020;57:700–707. doi: 10.7679/j.issn.2095-1353.2020.071. DOI

Huey R.B., Kingsolver J.G. Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms. Am. Nat. 2019;194:E140–E150. doi: 10.1086/705679. PubMed DOI

Seneviratne S.I., Donat M.G., Mueller B., Alexander L.V. No Pause in the Increase of Hot Temperature Extremes. Nat. Clim. Change. 2014;4:161–163. doi: 10.1038/nclimate2145. DOI

Basarin B., Lukić T., Matzarakis A. Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere. 2020;11:1276. doi: 10.3390/atmos11121276. DOI

Barriopedro D., García-Herrera R., Ordóñez C., Miralles D.G., Salcedo-Sanz S. Heat Waves: Physical Understanding and Scientific Challenges. Rev. Geophys. 2023;61:e2022RG000780. doi: 10.1029/2022RG000780. DOI

Singh D., Yadav A., Singh S., Yadav R.K., Sen M., Yadav A.K., Gehlot T., Mishra A., Pandey V., Singh A.K. Heat Waves and Its Impact on Crop Production and Mitigation Techniques: A Review. Int. J. Enviorn. Clim. Change. 2023;13:377–382. doi: 10.9734/ijecc/2023/v13i92243. DOI

Robinson P.J. On the Definition of a Heat Wave. J. Appl. Meteor. 2001;40:762–775. doi: 10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2. DOI

Hao X., Wang E., Yan H., Zhao P., Sheng F., Ren Q., Liu M., Zhang B., Xu X. Effects of Heat Stresses on Fitness of Three Commercial Predatory Mites. Syst. Appl. Acarol. 2024;29:1673–1684. doi: 10.11158/saa.29.12.8. DOI

Sentis A., Morisson J., Boukal D.S. Thermal Acclimation Modulates the Impacts of Temperature and Enrichment on Trophic Interaction Strengths and Population Dynamics. Glob. Change Biol. 2015;21:3290–3298. doi: 10.1111/gcb.12931. PubMed DOI

Tscholl T., Nachman G., Spangl B., Walzer A. Heat Waves Affect Prey and Predators Differently via Developmental Plasticity: Who May Benefit Most from Global Warming? Pest Manag. Sci. 2022;78:1099–1108. doi: 10.1002/ps.6722. PubMed DOI

Acosta N.C., Zehr L.N., Snook J.S., Szendrei Z., Kalwajtys M., Wetzel W.C. Heat Wave Impacts on Crop-pest Dynamics Are Dependent upon Insect Ontogeny and Plant Resistance. Ecosphere. 2024;15:e70028. doi: 10.1002/ecs2.70028. DOI

Harvey J.A., Heinen R., Gols R., Thakur M.P. Climate Change-mediated Temperature Extremes and Insects: From Outbreaks to Breakdowns. Glob. Change Biol. 2020;26:6685–6701. doi: 10.1111/gcb.15377. PubMed DOI PMC

Lesk C., Rowhani P., Ramankutty N. Influence of Extreme Weather Disasters on Global Crop Production. Nature. 2016;529:84–87. doi: 10.1038/nature16467. PubMed DOI

Hart A.J., Bale J.S., Tullett A.G., Worland M.R., Walters K.F.A. Effects of Temperature on the Establishment Potential of the Predatory Mite Amblyseius californicus McGregor (Acari: Phytoseiidae) in the UK. J. Insect Physiol. 2002;48:593–599. doi: 10.1016/S0022-1910(02)00087-2. PubMed DOI

Ghazy N.A., Suzuki T., Amano H., Ohyama K. Effects of Air Temperature and Water Vapor Pressure Deficit on Storage of the Predatory Mite Neoseiulus californicus (Acari: Phytoseiidae) Exp. Appl. Acarol. 2012;58:111–120. doi: 10.1007/s10493-012-9556-7. PubMed DOI

Skirvin D.J., Fenlon J.S. The Effect of Temperature on the Functional Response of Phytoseiulus persimilis (Acari: Phytoseiidae) Exp. Appl. Acarol. 2003;31:37–49. doi: 10.1023/B:APPA.0000005107.97373.87. PubMed DOI

Sabelis M.W. Modelling the Predator-Prey Interaction at the Individual Level. PUDOC; Wageningen, The Netherlands: 1982. Biological control of two-spotted spider mites using phytoseiid predators.

Zhao Y., Ducharne A., Sultan B., Braconnot P., Vautard R. Estimating Heat Stress from Climate-Based Indicators: Present-Day Biases and Future Spreads in the CMIP5 Global Climate Model Ensemble. Environ. Res. Lett. 2015;10:084013. doi: 10.1088/1748-9326/10/8/084013. DOI

Zhang G.H., Li Y.Y., Zhang K.J., Wang J.J., Liu Y.Q., Liu H. Effects of Heat Stress on Copulation, Fecunditiy and Longevity in Newly-Emerged Adults of the Predatory Mite Neoseiulus barkeri (Acari: Phytoseiidae) Syst. Appl. Acarol. 2016;21:295–306. doi: 10.11158/saa.21.3.5. DOI

Yao F., Zheng Y., Ding X., Zhao J., Lu X., Desneux N., He Y., Weng Q. Effects of Heat Shock on Survival and Predation of an Important Whitefly Predator, Serangium japonicum. Entomol. Exp. Appl. 2019;167:476–489. doi: 10.1111/eea.12794. DOI

Zhao C., Chen H., Guo J., Zhou Z. Effects of Fluctuating Thermal Regimes on Life History Parameters and Body Size of Ophraella communa. Insects. 2022;13:821. doi: 10.3390/insects13090821. PubMed DOI PMC

Li W.Z., Li H.L., Guo Z.K., Shang S.Q. Effects of Short-Term Heat Stress on the Development and Reproduction of Predatory Mite Neoseiulus barkeri (Acari, Phytoseiidae) Syst. Appl. Acarol. 2021;26:713–723. doi: 10.11158/saa.26.4.5. DOI

Li W., Zhu T., Li H., Shang S. The Effects of Short-term Heat Stress on Functional Response of Neoseiulus barkeri to Tetranychus urticae. J. Appl. Entomol. 2022;146:310–318. doi: 10.1111/jen.12954. DOI

Walzer A., Formayer H., Tixier M.-S. Evidence of Trans-Generational Developmental Modifications Induced by Simulated Heat Waves in an Arthropod. Sci. Rep. 2020;10:4098. doi: 10.1038/s41598-020-61040-z. PubMed DOI PMC

Mcmurtry J.A., Moraes G.J.D., Sourassou N.F. Revision of the Lifestyles of Phytoseiid Mites (Acari: Phytoseiidae) and Implications for Biological Control Strategies. Syst. Appl. Acarol. 2013;18:297–320. doi: 10.11158/saa.18.4.1. DOI

Pakyari H., Zemek R. The Effect of Light Cycles on the Predation Characteristics of Phytoseiulus persimilis (Acari: Phytoseiidae) Feeding on Tetranychus urticae (Acari: Tetranychidae) Plants. 2025;14:687. doi: 10.3390/plants14050687. PubMed DOI PMC

Helle W., Sabelis M.W., editors. Spider Mites: Their Biology, Natural Enemies, and Control. Elsevier Science Pub. Co.; Amsterdam, The Netherlands: New York, NY, USA: 1985. World crop pests.

Tixier M.-S. Predatory Mites (Acari: Phytoseiidae) in Agro-Ecosystems and Conservation Biological Control: A Review and Explorative Approach for Forecasting Plant-Predatory Mite Interactions and Mite Dispersal. Front. Ecol. Evol. 2018;6:192. doi: 10.3389/fevo.2018.00192. DOI

Vangansbeke D., Audenaert J., Nguyen D.T., Verhoeven R., Gobin B., Tirry L., De Clercq P. Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and Its Predators. PLoS ONE. 2015;10:e0124898. doi: 10.1371/journal.pone.0124898. PubMed DOI PMC

Coombs M.R., Bale J.S. Comparison of Thermal Activity Thresholds of the Spider Mite Predators Phytoseiulus macropilis and Phytoseiulus persimilis (Acari: Phytoseiidae) Exp. Appl. Acarol. 2013;59:435–445. doi: 10.1007/s10493-012-9619-9. PubMed DOI

Voroshilov N.V. Breeding of Thermo-Resistant Lines of Phytoseiulus (Phytoseiulus persimilis A-H) Genetika. 1979;15:70–76.

Walzer A., Nachman G., Spangl B., Stijak M., Tscholl T. Trans- and within-Generational Developmental Plasticity May Benefit the Prey but Not Its Predator during Heat Waves. Biology. 2022;11:1123. doi: 10.3390/biology11081123. PubMed DOI PMC

Tscholl T., Nachman G., Spangl B., Serve H.C., Walzer A. Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator. Biology. 2023;12:554. doi: 10.3390/biology12040554. PubMed DOI PMC

Tscholl T., Nachman G., Spangl B., Scalmani I., Walzer A. Parental Exposure to Heat Waves Improves Offspring Reproductive Investment in Tetranychus urticae (Acari: Tetranychidae), but Not in Its Predator, Phytoseiulus persimilis (Acari: Phytoseiidae) Ecol. Evol. 2023;13:e10748. doi: 10.1002/ece3.10748. PubMed DOI PMC

Zhu G., Xue M., Luo Y., Ji G., Liu F., Zhao H., Sun X. Effects of Short-Term Heat Shock and Physiological Responses to Heat Stress in Two Bradysia Adults, Bradysia odoriphaga and Bradysia difformis. Sci. Rep. 2017;7:13381. doi: 10.1038/s41598-017-13560-4. PubMed DOI PMC

Sun Y., Yang M., Ye Z., Zhu J., Fu Y., Chen J., Zhang F. Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere. Insects. 2024;15:801. doi: 10.3390/insects15100801. PubMed DOI PMC

Wang X., Shen X.-X., Yu X.-F., Gou J.-Y., Huang C.-Y., Yang M.-F. Effects of Short-Term Heat Stress on the Performance of the Predatory Gall Midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae) Biocontrol Sci. Technol. 2023;33:190–203. doi: 10.1080/09583157.2023.2167935. DOI

Chi H., Liu H. Two New Methods for the Study of Insect Population Ecology. Bull. Inst. Zool. Acad. Sin. 1985;24:225–240.

Huang Y., Chi H. Age-stage, Two-sex Life Tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a Discussion on the Problem of Applying Female Age-specific Life Tables to Insect Populations. Insect Sci. 2012;19:263–273. doi: 10.1111/j.1744-7917.2011.01424.x. DOI

Lehmann P., Ammunét T., Barton M., Battisti A., Eigenbrode S.D., Jepsen J.U., Kalinkat G., Neuvonen S., Niemelä P., Terblanche J.S., et al. Complex Responses of Global Insect Pests to Climate Warming. Front. Ecol. Environ. 2020;18:141–150. doi: 10.1002/fee.2160. DOI

Aguilar-Fenollosa E., Jacas J.A. Can We Forecast the Effects of Climate Change on Entomophagous Biological Control Agents? Pest. Manag. Sci. 2014;70:853–859. doi: 10.1002/ps.3678. PubMed DOI

Yao F.-L., You M.-S. Impacts of Global Warming on the Interaction between Host Plants, Insect Pests and Their Natural Enemies. Chin. J. Appl. Entomol. 2012;49:563–572.

Sharma H.C., Dhillon M.K. Climate Change Effects on Arthropod Diversity and Its Implications for Pest Management and Sustainable Crop Production. In: Hatfield J.L., Sivakumar M.V.K., Prueger J.H., editors. Agronomy Monographs. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.; Madison, WI, USA: 2018. pp. 595–619.

Peñalver-Cruz A., Escudero-Colomar L.A., Alins G., Franco M.E.E., Bosch-Serra D. Consequences of Global Warming on Apple Orchards in the Mediterranean Basin: Challenges of Insect Pest Management. Entomol. Gen. 2025;45:53–68. doi: 10.1127/entomologia/2024/2803. DOI

Colinet H., Sinclair B.J., Vernon P., Renault D. Insects in Fluctuating Thermal Environments. Annu. Rev. Entomol. 2015;60:123–140. doi: 10.1146/annurev-ento-010814-021017. PubMed DOI

Jafari S., Fathipour Y., Faraji F. Temperature-dependent Development of Neoseiulus barkeri (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae) at Seven Constant Temperatures. Insect Sci. 2012;19:220–228. doi: 10.1111/j.1744-7917.2011.01444.x. DOI

Yuan X., Wang X., Wang J., Zhao Y. Effects of brief exposure to high temperature on Neoseiulus californicus. Ying Yong Sheng Tai Xue Bao. 2015;26:853–858. PubMed

Xu Y., Zhang K., Zhang Z.-Q. Development, Survival, and Reproduction of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) Feeding on Fresh versus Frozen Eggs of Tetranychus urticae Koch (Acari: Tetranychidae) Acarologia. 2023;63:24–30. doi: 10.24349/17km-oc7u. DOI

Lu F., Chen Q., Chen Z., Lu H., Xu X., Jing F. Effects of Heat Stress on Development, Reproduction and Activities of Protective Enzymes in Mononychellus mcgregori. Exp. Appl. Acarol. 2014;63:267–284. doi: 10.1007/s10493-014-9784-0. PubMed DOI

Ma G., Rudolf V.H.W., Ma C. Extreme Temperature Events Alter Demographic Rates, Relative Fitness, and Community Structure. Global Change Biol. 2015;21:1794–1808. doi: 10.1111/gcb.12654. PubMed DOI

McCalla K.A., Keçeci M., Milosavljević I., Ratkowsky D.A., Hoddle M.S. The Influence of Temperature Variation on Life History Parameters and Thermal Performance Curves of Tamarixia radiata (Hymenoptera: Eulophidae), a Parasitoid of the Asian Citrus Psyllid (Hemiptera: Liviidae) J. Econ. Entomol. 2019;112:1560–1574. doi: 10.1093/jee/toz067. PubMed DOI

Bayu M.S.Y.I., Ullah M.S., Takano Y., Gotoh T. Impact of Constant versus Fluctuating Temperatures on the Development and Life History Parameters of Tetranychus urticae (Acari: Tetranychidae) Exp. Appl. Acarol. 2017;72:205–227. doi: 10.1007/s10493-017-0151-9. PubMed DOI

Vangansbeke D., Nguyen D.T., Audenaert J., Verhoeven R., Gobin B., Tirry L., De Clercq P. Prey Consumption by Phytoseiid Spider Mite Predators as Affected by Diurnal Temperature Variations. BioControl. 2015;60:595–603. doi: 10.1007/s10526-015-9677-0. DOI

Doker I., Kazak C., Karut K. Functional Response and Fecundity of a Native Neoseiulus californicus Population to Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) at Extreme Humidity Conditions. Syst. Appl. Acarol. 2016;21:1463. doi: 10.11158/saa.21.11.3. DOI

Ferrero M., Gigot C., Tixier M.-S., Van Houten Y.M., Kreiter S. Egg Hatching Response to a Range of Air Humidities for Six Species of Predatory Mites. Entomol. Exp. Appl. 2010;135:237–244. doi: 10.1111/j.1570-7458.2010.00992.x. DOI

Walzer A., Castagnoli M., Simoni S., Liguori M., Palevsky E., Schausberger P. Intraspecific Variation in Humidity Susceptibility of the Predatory Mite Neoseiulus californicus: Survival, Development and Reproduction. Biol. Control. 2007;41:42–52. doi: 10.1016/j.biocontrol.2006.11.012. DOI

Zundel C., Hanna R., Scheidegger U., Nagel P. Living at the Threshold: Where Does the Neotropical Phytoseiid Mite Typhlodromalus aripo Survive the Dry Season? Exp. Appl. Acarol. 2007;41:11–26. doi: 10.1007/s10493-007-9055-4. PubMed DOI

De Courcy Williams M.E., Kravar-garde L., Fenlon J.S., Sunderland K.D. Phytoseiid Mites in Protected Crops: The Effect of Humidity and Food Availability on Egg Hatch and Adult Life Span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) Exp. Appl. Acarol. 2004;32:1–13. doi: 10.1023/B:APPA.0000018170.46836.11. PubMed DOI

Le Hesran S., Groot T., Knapp M., Bukovinszky T., Forestier T., Dicke M. Phenotypic Variation in Egg Survival in the Predatory Mite Phytoseiulus persimilis under Dry Conditions. Biol. Control. 2019;130:88–94. doi: 10.1016/j.biocontrol.2018.10.007. DOI

Kjærsgaard A., Blanckenhorn W.U., Pertoldi C., Loeschcke V., Kaufmann C., Hald B., Pagès N., Bahrndorff S. Plasticity in Behavioural Responses and Resistance to Temperature Stress in Musca domestica. Animal Beh. 2015;99:123–130. doi: 10.1016/j.anbehav.2014.11.003. DOI

Dingha B.N., Appel A.G., Vogt J.T. Effects of Temperature on the Metabolic Rates of Insecticide Resistant and Susceptible German Cockroaches, Blattella germanica (L.) (Dictyoptera: Blattellidae) Midsouth Entomol. 2009;2:17–27.

Pakyari H., Fathipour Y., Enkegaard A. Effect of Temperature on Life Table Parameters of Predatory Thrips Scolothrips longicornis (Thysanoptera: Thripidae) Fed on Twospotted Spider Mites (Acari: Tetranychidae) J. Econ. Entom. 2011;104:799–805. doi: 10.1603/EC10144. PubMed DOI

Chen W., Li D., Zhang M., Zhao Y., Wu W., Zhang G. Cloning and Differential Expression of Five Heat Shock Protein Genes Associated with Thermal Stress and Development in the Polyphagous Predatory Mite Neoseiulus cucumeris (Acari: Phytoseiidae) Exp. Appl. Acarol. 2015;67:65–85. doi: 10.1007/s10493-015-9933-0. PubMed DOI

Colinet H., Overgaard J., Com E., Sørensen J.G. Proteomic Profiling of Thermal Acclimation in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2013;43:352–365. doi: 10.1016/j.ibmb.2013.01.006. PubMed DOI

Xia B., Zou Z., Li P., Lin P. Effect of Temperature on Development and Reproduction of Neoseiulus barkeri (Acari: Phytoseiidae) Fed on Aleuroglyphus ovatus. Exp. Appl. Acarol. 2012;56:33–41. doi: 10.1007/s10493-011-9481-1. PubMed DOI

Chi H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates among Individuals. Environ. Entomol. 1988;17:26–34. doi: 10.1093/ee/17.1.26. DOI

Goodman D. Optimal Life Histories, Optimal Notation, and the Value of Reproductive Value. Am. Nat. 1982;119:803–823. doi: 10.1086/283956. DOI

Chi H., Su H.-Y. Age-Stage, Two-Sex Life Tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and Its Host Myzus persicae (Sulzer) (Homoptera: Aphididae) with Mathematical Proof of the Relationship between Female Fecundity and the Net Reproductive Rate. Environ. Entomol. 2006;35:10–21. doi: 10.1603/0046-225X-35.1.10. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...