Comprehensive analysis of CNOT3-related neurodevelopmental disorders: phenotypic and genotypic characterization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 NS058721
NINDS NIH HHS - United States
PubMed
40562808
PubMed Central
PMC12322203
DOI
10.1038/s41431-025-01884-z
PII: 10.1038/s41431-025-01884-z
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- kojenec MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- missense mutace MeSH
- mladiství MeSH
- neurovývojové poruchy * genetika patologie MeSH
- předškolní dítě MeSH
- represorové proteiny * genetika MeSH
- transkripční faktory * genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CNOT3 protein, human MeSH Prohlížeč
- represorové proteiny * MeSH
- transkripční faktory * MeSH
The CCR4-NOT complex, crucial in gene expression regulation, includes CNOT3, a subunit linked to neurodevelopmental disorders when mutated. This study investigates 51 patients from 42 families with heterozygous CNOT3 variants, aiming to expand the understanding of CNOT3-related neurodevelopmental disorders and explore genotype-phenotype correlations. Patients originated from various countries, reflecting the disorder's global significance. All patients exhibited developmental delays, particularly in the language area. Intellectual disability was found in 87% of patients and was typically mild to moderate. Behavioral issues, including autism spectrum disorders and attention deficits, were common, affecting over half of the patients. Dysmorphic features were highlighted and may help establishing the diagnosis. Epilepsy was uncommon (10%). Twenty-eight novel variants were identified, including missense, nonsense, frameshift, intronic variations and a deletion of 12 exons. Missense variants clustered at the N- and C-terminal regions of the protein, indicating critical functional roles. No clear genotype-phenotype correlation was observed, suggesting that all identified variants resulted in a loss-of-function effect. Finally, this work delineates the clinical and molecular spectrum of CNOT3-related disorders thanks to an in-depth characterization of a large cohort. Further research will be necessary to understand the functional consequences of the variants and enhance patient long-term outcomes.
Brotman Baty Institute for Precision Medicine Seattle WA USA
Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA USA
Center for Medical Genetics Ghent University Hospital Ghent Belgium
Center for Rare Diseases Pediatric and Adolescent Medicine Aarhus University Hospital Aarhus Denmark
Centre for Rare Diseases Erlangen Erlangen Germany
Child Neuropsychiatry Unit IRCCS G Gaslini Institute Genoa Italy
CHU Lille Clinique de Génétique Lille France
Département de génétique médicale Hôpital Pitié Salpêtrière AP HP Sorbonne Université Paris France
Department of biomolecular medicine Ghent university Ghent Belgium
Department of Clinical Genetics Leiden University Medical Centre Leiden The Netherlands
Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
Department of Medical Genetics and Metabolism Valley Children's Hospital Madera CA USA
Department of Medicine and Surgery University of Milan Bicocca Monza Italy
Department of Neurobiology and Molecular Medicine IRCCS Fondazione Stella Maris Pisa Italy
Department of Neurology University of California San Francisco San Francisco CA USA
Department of Pediatrics University of Washington Seattle WA USA
Division of Human Genetics Children's Hospital of Philadelphia Philadelphia PA USA
Epilepsy Center Kleinwachau Radeberg Germany
Fondazione Policlinico Universitario Agostino Gemelli IRCCS Roma Italy
Genetic Medicine University of California San Francisco Fresno Fresno CA USA
Genetica Medica Azienda Ospedaliera Universitaria Senese Siena Italy
Genetics and Metabolics Clinic McMaster Children's Hospital Hamilton ON Canada
Genetics Department AP HP Robert Debré University Hospital Paris France
Genomics and Clinical Genetics IRCCS Istituto Giannina Gaslini Genoa Italy
Institut de Génétique Médicale CHU Lille Avenue Oscar Lambret Lille France
Institute of Human Genetics University Hospital Schleswig Holstein Kiel Germany
Institute of Human Genetics University Hospital Schleswig Holstein Lübeck Germany
Laboratoire Seqoia Paris France
Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
Medical Genetics University of Siena Siena Italy
NeuroDiderot UMR 1141 Inserm FHU I2 D2 Université de Paris Paris France
Pediatric Neurology and Muscular Diseases Unit IRCCS Istituto Giannina Gaslini Genova Italy
Radboud University Medical Center Department of Neurology Nijmegen The Netherlands
Service de Génétique Clinique et Oncogénétique CHU Amiens Picardie Amiens France
Service de Génétique Médicale Hôpital Purpan CHU de Toulouse Toulouse France
Service of Medical Genetics Oncologic Institute of Southern Switzerland EOC Switzerland Switzerland
UFR de Santé Médecine et Biologie humaine Université Sorbonne Paris Nord Bobigny France
Université de Bourgogne INSERM UMR1231 GAD Génétique des Anomalies du Développement Dijon France
Université de Franche Comté Centre de Génétique Humaine CHU Besançon Besançon France
Zobrazit více v PubMed
Collart MA. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip Rev RNA. 2016;7:438–54. PubMed PMC
Martin R, Splitt M, Genevieve D, Aten E, Collins A, de Bie CI, et al. De novo variants in CNOT3 cause a variable neurodevelopmental disorder. Eur J Hum Genet. 2019;27:1677–82. PubMed PMC
Meyer R, Begemann M, Demuth S, Kraft F, Dey D, Schüler H, et al. Inherited cases of CNOT3-associated intellectual developmental disorder with speech delay, autism, and dysmorphic facies. Clin Genet. 2020;98:408–12. PubMed
Pinard A, Guey S, Guo D, Cecchi AC, Kharas N, Wallace S, et al. The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy. Genet Med J Am Coll Med Genet. 2020;22:427–31. PubMed PMC
Priolo M, Radio FC, Pizzi S, Pintomalli L, Pantaleoni F, Mancini C, et al. Co-Occurring Heterozygous CNOT3 and SMAD6 Truncating Variants: Unusual Presentation and Refinement of the IDDSADF Phenotype. Genes. 2021;12:1009 PubMed PMC
Lv J, Ming WJ, Zheng Y, Xu S, Fang GL, Zhang Q, et al. A novel pathogenic variant in CNOT3 causing neurodevelopmental delay and epilepsy. Seizure. 2023;107:104–6. PubMed
Zhao P, Meng Q, Wan C, Lei T, Zhang L, Zhang X, et al. Clinical features of CNOT3-associated neurodevelopmental disorder in three Chinese patients. Neurogenet. 2023;24:129–36. PubMed
Lee CG, Kim HJ, Seol CA, Ki CS. Novel in-frame deletion CNOT3 variant in a family with intellectual developmental disorder with speech delay and dysmorphic facies. Neurol Genet. 2024;10:e200116. PubMed PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–30. PubMed PMC
DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation - PMC [Internet]. [cité 1 sept 2023]. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965078/. PubMed PMC
Baux D, Van Goethem C, Ardouin O, Guignard T, Bergougnoux A, Koenig M, et al. MobiDetails: online DNA variants interpretation. Eur J Hum Genet EJHG. 2021;29:356–60. PubMed PMC
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94. PubMed PMC
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9. PubMed PMC
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7. PubMed PMC
Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–7. PubMed PMC
Fokkema IFAC, den Dunnen JT, Taschner PEM. LOVD: easy creation of a locus-specific sequence variation database using an « LSDB-in-a-box » approach. Hum Mutat. 2005;26:63–8. PubMed
Day INM. dbSNP in the detail and copy number complexities. Hum Mutat. 2010;31:2–4. PubMed
Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, et al. Variant interpretation using population databases: Lessons from gnomAD. Hum Mutat. 2022;43:1012–30. PubMed PMC
Nassar LR, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2022;51:D1188–95. PubMed PMC
Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6:e1001025. PubMed PMC
Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185:862–4. PubMed
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7. PubMed PMC
Leman R, Parfait B, Vidaud D, Girodon E, Pacot L, Le Gac G, et al. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum Mutat. 2022;43:2308–23. PubMed PMC
罕见病数据库 [Internet]. [cité 2 févr 2025]. Disponible sur: https://rddc.tsinghua-gd.org/tool/rna-splicer?id=4849.
de Sainte Agathe JM, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, et al. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation. Hum Genomics. 2023;17:7. PubMed PMC
Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015;31:3359–61. PubMed PMC
on behalf of the ACMG Laboratory Quality Assurance Committee, Richards S, Aziz N, Bale S, Bick D, Das S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23. PubMed PMC
Franklin by Genoox: The Future of Genomic Medicine. 2022. [Internet]. 2022. Disponible sur: https://franklin.genoox.com.
Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci Publ Protein Soc. 2021;30:60–9. PubMed PMC
Boland A, Chen Y, Raisch T, Jonas S, Kuzuoğlu-Öztürk D, Wohlbold L, et al. Structure and assembly of the NOT module of the human CCR4-NOT complex. Nat Struct Mol Biol. 2013;20:1289–97. PubMed
Collart MA, Panasenko OO, Nikolaev SI. The Not3/5 subunit of the Ccr4-Not complex: A central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cell Signal. 2013;25:743–51. PubMed
Absmeier E, Chandrasekaran V, O’Reilly FJ, Stowell JA, Rappsilber J, Passmore LA. Specific recognition and ubiquitination of translating ribosomes by mammalian CCR4-NOT. Nat Struct Mol Biol. 2023;30:1314. PubMed PMC
Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40:1030–8. PubMed PMC