Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40565692
PubMed Central
PMC12191850
DOI
10.3390/foods14122081
PII: foods14122081
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural applications, beer, beer by-products, brewer residual yeast, circular economy, hot trub,
- Publikační typ
- časopisecké články MeSH
Three types of solid waste are produced during beer fermentation: spent grain, hot trub, and residual yeast. While the first is used as livestock feed, the seconds has not yet found any real reapplication in the field of circular economy. The aim of this work is to study and characterize these two brewing wastes, i.e., hot trub and residual yeast, to evaluate their potential reuse in the agricultural field. Samples from top-fermented and bottom-fermented beers were chemically investigated. Initially, the safety was assessed via multi-detection analysis of 57 mycotoxins, and all samples were deemed safe. Subsequently, the chemical and elemental composition was examined via ICP-MS and microanalysis, along with phenolic compounds and antioxidant activity via HPLC and spectrophotometric determinations, to achieve a thorough characterization of these waste samples. The C/N ratio of residual yeast from top-fermented beer and hot trub of the bottom-fermented one were near the optimal one (10:1). This research marks an initial step towards repurposing brewery waste materials as fertilizers. The subsequent steps will involve the formulation and field trials.
Zobrazit více v PubMed
dos Santos Mathias T.R., de Mello P.P.M., Sérvulo E.F.C. Solid wastes in brewing process: A review. J. Brew. Distill. 2014;5:1–19.
Mussatto S.I., Dragone G., Roberto I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006;43:1–14. doi: 10.1016/j.jcs.2005.06.001. DOI
Jackowski M., Niedźwiecki Ł., Jagiełło K., Uchańska O., Trusek A. Brewer’s spent grains—Valuable beer industry by-product. Biomolecules. 2020;10:1669. doi: 10.3390/biom10121669. PubMed DOI PMC
Ortiz I., Torreiro Y., Molina G., Maroño M., Sánchez J. A feasible application of circular economy: Spent grain energy recovery in the beer industry. Waste Biomass Valorization. 2019;10:3809–3819. doi: 10.1007/s12649-019-00677-y. DOI
Mudura E., Coldea T. Hop-derived prenylflavonoids and their importance in brewing technology: A review. BUASVM Food Sci. Technol. 2015;72:1–10. doi: 10.15835/buasvmcn-fst:11198. DOI
Bamforth C. Brewing: New Technologies. Woodhead Publishing; New Delhi, India: 2006.
Rachwał K., Waśko A., Gustaw K., Polak-Berecka M. Utilization of brewery wastes in food industry. PeerJ. 2020;8:e9427. doi: 10.7717/peerj.9427. PubMed DOI PMC
Saraiva B.R., Anjo F.A., Vital A.C.P., da Silva L.H.M., Ogawa C.Y.L., Sato F., Coimbra L.B., Matumoto-Pintro P.T. Waste from brewing (trub) as a source of protein for the food industry. Int. J. Food Sci. Technol. 2019;54:1247–1255. doi: 10.1111/ijfs.14101. DOI
Jaeger A., Arendt E.K., Zannini E., Sahin A.W. Brewer’s spent yeast (BSY), an underutilized brewing by-product. Fermentation. 2020;6:123. doi: 10.3390/fermentation6040123. DOI
Sterczyńska M., Zdaniewicz M., Wolny-Koładka K. Rheological and microbiological characteristics of hops and hot trub particles formed during beer production. Molecules. 2021;26:681. doi: 10.3390/molecules26030681. PubMed DOI PMC
de Andrade Silva G.V., Arend G.D., Zielinski A.A.F., Di Luccio M., Ambrosi A. Xanthohumol properties and strategies for extraction from hops and brewery residues: A review. Food Chem. 2023;404:134629. doi: 10.1016/j.foodchem.2022.134629. PubMed DOI
34.3 bn Litres of Beer Produced in the EU in 2023. Eurostat News. Dataset: DS-056120. [(accessed on 9 September 2024)]. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/edn-20240802-1.
Cimini A., Moresi M. Circular economy in the brewing chain. Ital. J. Food Sci. 2021;33:47–69. doi: 10.15586/ijfs.v33i3.2123. DOI
Karlović A., Jurić A., Ćorić N., Habschied K., Krstanović V., Mastanjević K. By-products in the malting and brewing industries—Re-usage possibilities. Fermentation. 2020;6:82. doi: 10.3390/fermentation6030082. DOI
Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance) Eur-Lex. 2008. [(accessed on 9 September 2024)]. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj/eng.
Dzuman Z., Zachariasova M., Lacina O., Veprikova Z., Slavikova P., Hajslova J. A rugged high-throughput analytical approach for the determination and quantification of multiple mycotoxins in complex feed matrices. Talanta. 2014;121:263–272. doi: 10.1016/j.talanta.2013.12.064. PubMed DOI
ISO 17034:2016 [(accessed on 19 September 2024)];General Requirements for the Competence of Reference Material Producers. Available online: https://www.iso.org/standard/29357.html.
Piatti D., Marconi R., Caprioli G., Angeloni S., Ricciutelli M., Zengin G., Maggi F., Pagni L., Sagratini G. Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L. Appl. Sci. 2023;13:13304.
Alessandroni L., Bellabarba L., Corsetti S., Sagratini G. Valorization of Cynara cardunculus L. var. scolymus Processing By-Products of Typical Landrace “Carciofo Di Montelupone” from Marche Region (Italy) Gastronomy. 2024;2:129–140. doi: 10.3390/gastronomy2040010. DOI
Giusti F., Caprioli G., Ricciutelli M., Vittori S., Sagratini G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017;221:689–697. doi: 10.1016/j.foodchem.2016.11.118. PubMed DOI
Nkuimi Wandjou J.G., Mevi S., Sagratini G., Vittori S., Dall’Acqua S., Caprioli G., Lupidi G., Mombelli G., Arpini S., Allegrini P. Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of central Italy (Mela Rosa dei Monti Sibillini) Plants. 2019;9:9. doi: 10.3390/plants9010009. PubMed DOI PMC
Ciont C., Epuran A., Kerezsi A.D., Coldea T.E., Mudura E., Pasqualone A., Zhao H., Suharoschi R., Vriesekoop F., Pop O.L. Beer safety: New challenges and future trends within craft and large-scale production. Foods. 2022;11:2693. doi: 10.3390/foods11172693. PubMed DOI PMC
Prusova N., Dzuman Z., Jelinek L., Karabin M., Hajslova J., Rychlik M., Stranska M. Free and conjugated Alternaria and Fusarium mycotoxins during Pilsner malt production and double-mash brewing. Food Chem. 2022;369:130926. doi: 10.1016/j.foodchem.2021.130926. PubMed DOI
Habler K., Hofer K., Geißinger C., Schuler J., Huckelhoven R., Hess M., Gastl M., Rychlik M. Fate of Fusarium toxins during the malting process. J. Agric. Food Chem. 2016;64:1377–1384. doi: 10.1021/acs.jafc.5b05998. PubMed DOI
Hu L., Gastl M., Linkmeyer A., Hess M., Rychlik M. Fate of enniatins and beauvericin during the malting and brewing process determined by stable isotope dilution assays. LWT. 2014;56:469–477. doi: 10.1016/j.lwt.2013.11.004. DOI
Lago L.O., Maciel J.B.H., Costa G.P., Mallmann L.P., Veras F.F., Welke J.E. Fate of enniatins in the Ale beer production stages analyzed by a validated method based on matrix-matched calibration and LC-QToF-MS. Food Chem. 2022;384:132484. doi: 10.1016/j.foodchem.2022.132484. PubMed DOI
Benford D., Ceccatelli S., Cottrill B., Dinovi M., Dogliotti E., Edler L., Farmer P., Fuerst P., Hoogenboom L., Knutsen H.K. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014;12:3916.
Mertz D., Edward T., Lee D., Zuber M. Absorption of aflatoxin by lettuce seedlings grown in soil adulterated with aflatoxin B1. J. Agric. Food Chem. 1981;29:1168–1170. doi: 10.1021/jf00108a017. PubMed DOI
Mantle P.G., Chow A.M. Ochratoxin formation in Aspergillus ochraceus with particular reference to spoilage of coffee. Int. J. Food Microbiol. 2000;56:105–109. doi: 10.1016/S0168-1605(00)00278-6. PubMed DOI
Santos L.G., Martins V.G. Functional, thermal, bioactive and antihypertensive properties of hot trub derived from brewing waste as an alternative source of protein. Food Hydrocoll. 2024;146:109292. doi: 10.1016/j.foodhyd.2023.109292. DOI
Saraiva B.R., Zancheta J.C., Sversut Gibin M., Anjo F.A., Lazzari A., Machado Filho E.R., Sato F., Matumoto-Pintro P. Brewing by-product valorisation: Trub debittered for nutritional and quality improvement of pasta. Int. J. Food Sci. Nutr. 2022;73:915–926. doi: 10.1080/09637486.2022.2090519. PubMed DOI
Sterczyńska M., Stachnik M., Poreda A., Pużyńska K., Piepiórka-Stepuk J., Fiutak G., Jakubowski M. Ionic composition of beer worts produced with selected unmalted grains. LWT. 2021;137:110348. doi: 10.1016/j.lwt.2020.110348. DOI
Podpora B., Świderski F., Sadowska A., Rakowska R., Wasiak-Zys G. Spent brewer’s yeast extracts as a new component of functional food. Czech J. Food Sci. 2016;34:554. doi: 10.17221/419/2015-CJFS. DOI
Mathias T.R.d.S., Alexandre V.M.F., Cammarota M.C., de Mello P.P.M., Sérvulo E.F.C. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015;121:400–404. doi: 10.1002/jib.229. DOI
Michailidis P.A., Krokida M.K. Drying and dehydration processes in food preservation and processing. Conv. Adv. Food Process. Technol. 2014;1:1–32.
Anas M., Liao F., Verma K.K., Sarwar M.A., Mahmood A., Chen Z.-L., Li Q., Zeng X.-P., Liu Y., Li Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020;53:47. doi: 10.1186/s40659-020-00312-4. PubMed DOI PMC
Biederbeck V. Developments in Soil Science. Elsevier; Amsterdam, The Netherlands: 1978. Soil organic sulfur and fertility; pp. 273–310.
Krapp A., Traong H.-N. Regulation of C/N interaction in model plant species. J. Crop Improv. 2006;15:127–173. doi: 10.1300/J411v15n02_05. DOI
Mikula K., Izydorczyk G., Skrzypczak D., Mironiuk M., Moustakas K., Witek-Krowiak A., Chojnacka K. Controlled release micronutrient fertilizers for precision agriculture—A review. Sci. Total Environ. 2020;712:136365. doi: 10.1016/j.scitotenv.2019.136365. PubMed DOI
Calvo P., Nelson L., Kloepper J.W. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3–41. doi: 10.1007/s11104-014-2131-8. DOI
Rouphael Y., Colla G. Biostimulants in Agriculture. Frontiers Media SA; Lausanne, Switzerland: 2020. p. 40. PubMed PMC
Fărcaş A., Tofană M., Socaci S., Scrob S., Salanţă L., Borşa A. Preliminary study on antioxidant activity and polyphenols content in discharged waste from beer production. J. Agroaliment. Process. Technol. 2013;19:319–324.
León-González M.E., Gómez-Mejía E., Rosales-Conrado N., Madrid-Albarrán Y. Residual brewing yeast as a source of polyphenols: Extraction, identification and quantification by chromatographic and chemometric tools. Food Chem. 2018;267:246–254. doi: 10.1016/j.foodchem.2017.06.141. PubMed DOI
Senna Ferreira Costa F., Roquete Amparo T., Brandão Seibert J., Silveira B.M., Gomes da Silva R., Inocêncio Pereira D., Gontijo Garcia Barbosa R., dos Santos O.D.H., Brandão G.C., de Medeiros Teixeira L.F. Reuse of hot trub as an active ingredient with antioxidant and antimicrobial potential. Waste Biomass Valorization. 2021;12:2037–2047. doi: 10.1007/s12649-020-01163-6. DOI
Barbosa-Pereira L., Angulo I., Paseiro-Losada P., Cruz J.M. Phenolic profile and antioxidant properties of a crude extract obtained from a brewery waste stream. Food Res. Int. 2013;51:663–669. doi: 10.1016/j.foodres.2013.01.042. PubMed DOI PMC
Hejna A. More than just a beer—The potential applications of by-products from beer manufacturing in polymer technology. Emergent Mater. 2022;5:765–783. doi: 10.1007/s42247-021-00304-4. DOI
Silva K.F.C.E., Strieder M.M., Pinto M.B.C., Rostagno M.A., Hubinger M.D. Processing strategies for extraction and concentration of bitter acids and polyphenols from brewing by-products: A comprehensive review. Processes. 2023;11:921. doi: 10.3390/pr11030921. DOI
Kisiriko M., Anastasiadi M., Terry L.A., Yasri A., Beale M.H., Ward J.L. Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules. 2021;26:6343. doi: 10.3390/molecules26216343. PubMed DOI PMC
Cesco S., Mimmo T., Tonon G., Tomasi N., Pinton R., Terzano R., Neumann G., Weisskopf L., Renella G., Landi L. Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol. Fertil. Soils. 2012;48:123–149. doi: 10.1007/s00374-011-0653-2. DOI
Mussatto S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014;94:1264–1275. doi: 10.1002/jsfa.6486. PubMed DOI