• This record comes from PubMed

A Roadmap for Improving Reliability and Data Sharing in Crosslinking Mass Spectrometry

. 2025 Jun 26 ; 24 (8) : 101024. [epub] 20250626

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 40581115
PubMed Central PMC12359214
DOI 10.1016/j.mcpro.2025.101024
PII: S1535-9476(25)00123-9
Knihovny.cz E-resources

Crosslinking mass spectrometry (MS) can uncover protein-protein interactions and provide structural information on proteins in their native cellular environments. Despite its promise, the field remains hampered by inconsistent data formats, variable approaches to error control, and insufficient interoperability with global data repositories. Recent advances, especially in false discovery rate models and pipeline benchmarking, show that crosslinking MS data can reach a reliability that matches the demand of integrative structural biology. To drive meaningful progress, however, the community must agree on error estimation, open data formats, and streamlined repository submissions. This perspective highlights these challenges, clarifies remaining barriers, and frames practical next steps. Successful field harmonization will enhance the acceptance of crosslinking MS in the broader biological community and is critical for the dependability of the data, no matter where it is produced.

Biomolecular Mass Spectrometry and Proteomics Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University Utrecht Netherlands

Center for Structural Biology Center for Cancer Research National Cancer Institute National Institutes of Health Frederick Maryland USA

Department of Biochemistry and Molecular Biology University of Calgary Alberta Canada

Department of Biochemistry Faculty of Science Charles University Prague Czech Republic; Institute of Microbiology The Czech Academy of Sciences Vestec Czech Republic

Department of Biology University of Konstanz Konstanz Germany; Konstanz Research School Chemical Biology University of Konstanz Konstanz Germany

Department of Chemistry Johns Hopkins University Baltimore Maryland United States; T C Jenkins Department of Biophysics Johns Hopkins University Baltimore Maryland United States

Department of Genome Sciences University of Washington Seattle Washington USA

Department of Pharmaceutical Chemistry and Bioanalytics Center for Structural Mass Spectrometry Martin Luther University Halle Wittenberg Halle Germany

Department of Physical and Chemical Sciences University of L'Aquila L'Aquila Italy

Institute of Molecular Systems Biology Department of Biology ETH Zürich Zurich Switzerland

Institute of Structural and Molecular Biology Division of Biosciences University College London London United Kingdom; Institute of Structural and Molecular Biology Birkbeck College University of London London United Kingdom

Research Institute of Molecular Pathology Austrian Academy of Sciences Vienna BioCenter Vienna Austria

Structural Proteomics Human Technopole Milano Italy

Technische Universität Berlin Chair of Bioanalytics Berlin Germany; Wellcome Centre for Cell Biology University of Edinburgh Edinburgh UK; Si M Der Simulierte Mensch a Science Framework of Technische Universität Berlin and Charité Universitätsmedizin Berlin Berlin Germany

See more in PubMed

O’Reilly F.J., Rappsilber J. Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 2018;25:1000–1008. PubMed

Graziadei A., Rappsilber J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure. 2022;30:37–54. PubMed

Botticelli L., Bakhtina A.A., Kaiser N.K., Keller A., McNutt S., Bruce J.E., et al. Chemical cross-linking and mass spectrometry enabled systems-level structural biology. Curr. Opin. Struct. Biol. 2024;87 PubMed PMC

Yu C., Huang L. New advances in cross-linking mass spectrometry toward structural systems biology. Curr. Opin. Chem. Biol. 2023;76 PubMed PMC

Klykov O., Kopylov M., Carragher B., Heck A.J.R., Noble A.J., Scheltema R.A. Label-free visual proteomics: coupling MS- and EM-based approaches in structural biology. Mol. Cell. 2022;82:285–303. PubMed PMC

Piersimoni L., Kastritis P.L., Arlt C., Sinz A. Cross-linking mass spectrometry for investigating protein conformations and protein-protein Interactions–A method for all seasons. Chem. Rev. 2022;122:7500–7531. PubMed

Leitner A., Bonvin A.M.J.J., Borchers C.H., Chalkley R.J., Chamot-Rooke J., Combe C.W., et al. Toward increased reliability, transparency, and accessibility in Cross-linking mass spectrometry. Structure. 2020;28:1259–1268. PubMed

Iacobucci C., Piotrowski C., Aebersold R., Amaral B.C., Andrews P., Bernfur K., et al. First community-wide, comparative cross-linking mass spectrometry study. Anal. Chem. 2019;91:6953–6961. PubMed PMC

Chen Z.A., Pellarin R., Fischer L., Sali A., Nilges M., Barlow P.N., et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol. Cell Proteomics. 2016;15:2730–2743. PubMed PMC

Müller F., Graziadei A., Rappsilber J. Quantitative photo-crosslinking mass spectrometry revealing protein structure response to environmental changes. Anal. Chem. 2019;91:9041–9048. PubMed PMC

Wippel H.H., Chavez J.D., Keller A.D., Bruce J.E. Multiplexed isobaric quantitative cross-linking reveals drug-induced interactome changes in breast cancer cells. Anal. Chem. 2022;94:2713–2722. PubMed PMC

Orchard S., Albar J.-P., Deutsch E.W., Eisenacher M., Binz P.-A., Hermjakob H. Implementing data standards: a report on the HUPOPSI workshop September 2009, Toronto, Canada. Proteomics. 2010;10:1895–1898. PubMed

Vizcaíno J.A., Mayer G., Perkins S., Barsnes H., Vaudel M., Perez-Riverol Y., et al. The mzIdentML data standard version 1.2, supporting advances in proteome informatics. Mol. Cell. Proteomics. 2017;16:1275–1285. PubMed PMC

Combe C.W., Kolbowski L., Fischer L., Koskinen V., Klein J., Leitner A., et al. mzIdentML 1.3.0 - essential progress on the support of crosslinking and other identifications based on multiple spectra. Proteomics. 2024;24 PubMed

Giese S.H., Belsom A., Sinn L., Fischer L., Rappsilber J. Noncovalently associated peptides observed during liquid chromatography-mass spectrometry and their effect on cross-link analyses. Anal. Chem. 2019;91:2678–2685. PubMed PMC

Hoopmann M.R., Zelter A., Johnson R.S., Riffle M., MacCoss M.J., Davis T.N., et al. Kojak: efficient analysis of chemically cross-linked protein complexes. J. Proteome Res. 2015;14:2190–2198. PubMed PMC

Clasen M.A., Ruwolt M., Wang C., Ruta J., Bogdanow B., Kurt L.U., et al. Proteome-scale recombinant standards and a robust high-speed search engine to advance cross-linking MS-based interactomics. Nat. Methods. 2024;21:2327–2335. PubMed PMC

Fischer L., Rappsilber J. Quirks of error estimation in cross-linking/mass spectrometry. Anal. Chem. 2017;89:3829–3833. PubMed PMC

Combe C.W., Graham M., Kolbowski L., Fischer L., Rappsilber J. XiVIEW: visualisation of crosslinking mass spectrometry data. J. Mol. Biol. 2024;436 PubMed

Combe C.W., Fischer L., Rappsilber J. xiNET: cross-link network maps with residue resolution. Mol. Cell Proteomics. 2015;14:1137–1147. PubMed PMC

Kolbowski L., Combe C., Rappsilber J. xiSPEC: web-based visualization, analysis and sharing of proteomics data. Nucleic Acids Res. 2018;46:W473–W478. PubMed PMC

Wilkinson M.D., Dumontier M., Aalbersberg I.J.J., Appleton G., Axton M., Baak A., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3 PubMed PMC

Deutsch E.W., Bandeira N., Perez-Riverol Y., Sharma V., Carver J.J., Mendoza L., et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 2023;51:D1539–D1548. PubMed PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC

Moriya Y., Kawano S., Okuda S., Watanabe Y., Matsumoto M., Takami T., et al. The jPOST environment: an integrated proteomics data repository and database. Nucleic Acids Res. 2019;47:D1218–D1224. PubMed PMC

Choi M., Carver J., Chiva C., Tzouros M., Huang T., Tsai T.-H., et al. MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat. Methods. 2020;17:981–984. PubMed PMC

Jupyter Notebooks – a publishing format for reproducible computational workflows ResearchGate. IOS Press; Amsterdam, the Netherlands: 2016.

Taylor C.F., Binz P.-A., Aebersold R., Affolter M., Barkovich R., Deutsch E.W., et al. Guidelines for reporting the use of mass spectrometry in proteomics. Nat. Biotechnol. 2008;26:860–861. PubMed

Vallat B., Webb B.M., Zalevsky A., Tangmunarunkit H., Sekharan M.R., Voinea S., et al. PDB-IHM: a system for deposition, curation, validation, and dissemination of integrative structures. J. Mol. Biol. 2025 PubMed PMC

Vallat B., Webb B.M., Westbrook J.D., Goddard T.D., Hanke C.A., Graziadei A., et al. IHMCIF: an extension of the PDBx/mmCIF data standard for integrative structure determination methods. J. Mol. Biol. 2024;436 PubMed PMC

Sali A., Berman H.M., Schwede T., Trewhella J., Kleywegt G., Burley S.K., et al. Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure. 2015;23:1156–1167. PubMed PMC

Berman H.M., Adams P.D., Bonvin A.A., Burley S.K., Carragher B., Chiu W., et al. Federating structural models and data: outcomes from A workshop on archiving integrative structures. Structure. 2019;27:1745–1759. PubMed PMC

Fischer L., Rappsilber J. Rescuing error control in crosslinking mass spectrometry. Mol. Syst. Biol. 2024;20:1076–1084. PubMed PMC

Lenz S., Sinn L.R., O’Reilly F.J., Fischer L., Wegner F., Rappsilber J. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nat. Commun. 2021;12:3564. PubMed PMC

Beveridge R., Stadlmann J., Penninger J.M., Mechtler K. A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes. Nat. Commun. 2020;11:742. PubMed PMC

Hoopmann M.R., Shteynberg D.D., Zelter A., Riffle M., Lyon A.S., Agard D.A., et al. Improved analysis of cross-linking mass spectrometry data with Kojak 2.0, advanced by integration into the Trans-proteomic pipeline. J. Proteome Res. 2023;22:647–655. PubMed PMC

Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–3567. PubMed

Orsburn B.C. Proteome discoverer-A community enhanced data processing suite for protein informatics. Proteomes. 2021;9:15. PubMed PMC

Chalkley R.J., Hansen K.C., Baldwin M.A. Bioinformatic methods to exploit mass spectrometric data for proteomic applications. Methods Enzymol. 2005;402:289–312. PubMed

Chalkley R.J., Baker P.R. Improving the depth and reliability of glycopeptide identification using protein prospector. Mol. Cell Proteomics. 2025;24 PubMed PMC

Götze M., Pettelkau J., Fritzsche R., Ihling C.H., Schäfer M., Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J. Am. Soc. Mass Spectrom. 2015;26:83–97. PubMed

Russel D., Lasker K., Webb B., Velázquez-Muriel J., Tjioe E., Schneidman-Duhovny D., et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 2012;10 PubMed PMC

Stahl K., Graziadei A., Dau T., Brock O., Rappsilber J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat Biotechnol. 2023;41:1810–1819. PubMed PMC

Stahl K., Warneke R., Demann L., Bremenkamp R., Hormes B., Brock O., et al. Modelling protein complexes with crosslinking mass spectrometry and deep learning. Nat. Commun. 2024;15:7866. PubMed PMC

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...