A Roadmap for Improving Reliability and Data Sharing in Crosslinking Mass Spectrometry
Status Publisher Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40581115
PubMed Central
PMC12359214
DOI
10.1016/j.mcpro.2025.101024
PII: S1535-9476(25)00123-9
Knihovny.cz E-resources
- Keywords
- crosslinking mass spectrometry, data analysis, data sharing, repository, standardization,
- Publication type
- Journal Article MeSH
Crosslinking mass spectrometry (MS) can uncover protein-protein interactions and provide structural information on proteins in their native cellular environments. Despite its promise, the field remains hampered by inconsistent data formats, variable approaches to error control, and insufficient interoperability with global data repositories. Recent advances, especially in false discovery rate models and pipeline benchmarking, show that crosslinking MS data can reach a reliability that matches the demand of integrative structural biology. To drive meaningful progress, however, the community must agree on error estimation, open data formats, and streamlined repository submissions. This perspective highlights these challenges, clarifies remaining barriers, and frames practical next steps. Successful field harmonization will enhance the acceptance of crosslinking MS in the broader biological community and is critical for the dependability of the data, no matter where it is produced.
Department of Biochemistry and Molecular Biology University of Calgary Alberta Canada
Department of Genome Sciences University of Washington Seattle Washington USA
Department of Physical and Chemical Sciences University of L'Aquila L'Aquila Italy
Institute of Molecular Systems Biology Department of Biology ETH Zürich Zurich Switzerland
See more in PubMed
O’Reilly F.J., Rappsilber J. Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 2018;25:1000–1008. PubMed
Graziadei A., Rappsilber J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure. 2022;30:37–54. PubMed
Botticelli L., Bakhtina A.A., Kaiser N.K., Keller A., McNutt S., Bruce J.E., et al. Chemical cross-linking and mass spectrometry enabled systems-level structural biology. Curr. Opin. Struct. Biol. 2024;87 PubMed PMC
Yu C., Huang L. New advances in cross-linking mass spectrometry toward structural systems biology. Curr. Opin. Chem. Biol. 2023;76 PubMed PMC
Klykov O., Kopylov M., Carragher B., Heck A.J.R., Noble A.J., Scheltema R.A. Label-free visual proteomics: coupling MS- and EM-based approaches in structural biology. Mol. Cell. 2022;82:285–303. PubMed PMC
Piersimoni L., Kastritis P.L., Arlt C., Sinz A. Cross-linking mass spectrometry for investigating protein conformations and protein-protein Interactions–A method for all seasons. Chem. Rev. 2022;122:7500–7531. PubMed
Leitner A., Bonvin A.M.J.J., Borchers C.H., Chalkley R.J., Chamot-Rooke J., Combe C.W., et al. Toward increased reliability, transparency, and accessibility in Cross-linking mass spectrometry. Structure. 2020;28:1259–1268. PubMed
Iacobucci C., Piotrowski C., Aebersold R., Amaral B.C., Andrews P., Bernfur K., et al. First community-wide, comparative cross-linking mass spectrometry study. Anal. Chem. 2019;91:6953–6961. PubMed PMC
Chen Z.A., Pellarin R., Fischer L., Sali A., Nilges M., Barlow P.N., et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol. Cell Proteomics. 2016;15:2730–2743. PubMed PMC
Müller F., Graziadei A., Rappsilber J. Quantitative photo-crosslinking mass spectrometry revealing protein structure response to environmental changes. Anal. Chem. 2019;91:9041–9048. PubMed PMC
Wippel H.H., Chavez J.D., Keller A.D., Bruce J.E. Multiplexed isobaric quantitative cross-linking reveals drug-induced interactome changes in breast cancer cells. Anal. Chem. 2022;94:2713–2722. PubMed PMC
Orchard S., Albar J.-P., Deutsch E.W., Eisenacher M., Binz P.-A., Hermjakob H. Implementing data standards: a report on the HUPOPSI workshop September 2009, Toronto, Canada. Proteomics. 2010;10:1895–1898. PubMed
Vizcaíno J.A., Mayer G., Perkins S., Barsnes H., Vaudel M., Perez-Riverol Y., et al. The mzIdentML data standard version 1.2, supporting advances in proteome informatics. Mol. Cell. Proteomics. 2017;16:1275–1285. PubMed PMC
Combe C.W., Kolbowski L., Fischer L., Koskinen V., Klein J., Leitner A., et al. mzIdentML 1.3.0 - essential progress on the support of crosslinking and other identifications based on multiple spectra. Proteomics. 2024;24 PubMed
Giese S.H., Belsom A., Sinn L., Fischer L., Rappsilber J. Noncovalently associated peptides observed during liquid chromatography-mass spectrometry and their effect on cross-link analyses. Anal. Chem. 2019;91:2678–2685. PubMed PMC
Hoopmann M.R., Zelter A., Johnson R.S., Riffle M., MacCoss M.J., Davis T.N., et al. Kojak: efficient analysis of chemically cross-linked protein complexes. J. Proteome Res. 2015;14:2190–2198. PubMed PMC
Clasen M.A., Ruwolt M., Wang C., Ruta J., Bogdanow B., Kurt L.U., et al. Proteome-scale recombinant standards and a robust high-speed search engine to advance cross-linking MS-based interactomics. Nat. Methods. 2024;21:2327–2335. PubMed PMC
Fischer L., Rappsilber J. Quirks of error estimation in cross-linking/mass spectrometry. Anal. Chem. 2017;89:3829–3833. PubMed PMC
Combe C.W., Graham M., Kolbowski L., Fischer L., Rappsilber J. XiVIEW: visualisation of crosslinking mass spectrometry data. J. Mol. Biol. 2024;436 PubMed
Combe C.W., Fischer L., Rappsilber J. xiNET: cross-link network maps with residue resolution. Mol. Cell Proteomics. 2015;14:1137–1147. PubMed PMC
Kolbowski L., Combe C., Rappsilber J. xiSPEC: web-based visualization, analysis and sharing of proteomics data. Nucleic Acids Res. 2018;46:W473–W478. PubMed PMC
Wilkinson M.D., Dumontier M., Aalbersberg I.J.J., Appleton G., Axton M., Baak A., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3 PubMed PMC
Deutsch E.W., Bandeira N., Perez-Riverol Y., Sharma V., Carver J.J., Mendoza L., et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 2023;51:D1539–D1548. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC
Moriya Y., Kawano S., Okuda S., Watanabe Y., Matsumoto M., Takami T., et al. The jPOST environment: an integrated proteomics data repository and database. Nucleic Acids Res. 2019;47:D1218–D1224. PubMed PMC
Choi M., Carver J., Chiva C., Tzouros M., Huang T., Tsai T.-H., et al. MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat. Methods. 2020;17:981–984. PubMed PMC
Jupyter Notebooks – a publishing format for reproducible computational workflows ResearchGate. IOS Press; Amsterdam, the Netherlands: 2016.
Taylor C.F., Binz P.-A., Aebersold R., Affolter M., Barkovich R., Deutsch E.W., et al. Guidelines for reporting the use of mass spectrometry in proteomics. Nat. Biotechnol. 2008;26:860–861. PubMed
Vallat B., Webb B.M., Zalevsky A., Tangmunarunkit H., Sekharan M.R., Voinea S., et al. PDB-IHM: a system for deposition, curation, validation, and dissemination of integrative structures. J. Mol. Biol. 2025 PubMed PMC
Vallat B., Webb B.M., Westbrook J.D., Goddard T.D., Hanke C.A., Graziadei A., et al. IHMCIF: an extension of the PDBx/mmCIF data standard for integrative structure determination methods. J. Mol. Biol. 2024;436 PubMed PMC
Sali A., Berman H.M., Schwede T., Trewhella J., Kleywegt G., Burley S.K., et al. Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure. 2015;23:1156–1167. PubMed PMC
Berman H.M., Adams P.D., Bonvin A.A., Burley S.K., Carragher B., Chiu W., et al. Federating structural models and data: outcomes from A workshop on archiving integrative structures. Structure. 2019;27:1745–1759. PubMed PMC
Fischer L., Rappsilber J. Rescuing error control in crosslinking mass spectrometry. Mol. Syst. Biol. 2024;20:1076–1084. PubMed PMC
Lenz S., Sinn L.R., O’Reilly F.J., Fischer L., Wegner F., Rappsilber J. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nat. Commun. 2021;12:3564. PubMed PMC
Beveridge R., Stadlmann J., Penninger J.M., Mechtler K. A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes. Nat. Commun. 2020;11:742. PubMed PMC
Hoopmann M.R., Shteynberg D.D., Zelter A., Riffle M., Lyon A.S., Agard D.A., et al. Improved analysis of cross-linking mass spectrometry data with Kojak 2.0, advanced by integration into the Trans-proteomic pipeline. J. Proteome Res. 2023;22:647–655. PubMed PMC
Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–3567. PubMed
Orsburn B.C. Proteome discoverer-A community enhanced data processing suite for protein informatics. Proteomes. 2021;9:15. PubMed PMC
Chalkley R.J., Hansen K.C., Baldwin M.A. Bioinformatic methods to exploit mass spectrometric data for proteomic applications. Methods Enzymol. 2005;402:289–312. PubMed
Chalkley R.J., Baker P.R. Improving the depth and reliability of glycopeptide identification using protein prospector. Mol. Cell Proteomics. 2025;24 PubMed PMC
Götze M., Pettelkau J., Fritzsche R., Ihling C.H., Schäfer M., Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J. Am. Soc. Mass Spectrom. 2015;26:83–97. PubMed
Russel D., Lasker K., Webb B., Velázquez-Muriel J., Tjioe E., Schneidman-Duhovny D., et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 2012;10 PubMed PMC
Stahl K., Graziadei A., Dau T., Brock O., Rappsilber J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat Biotechnol. 2023;41:1810–1819. PubMed PMC
Stahl K., Warneke R., Demann L., Bremenkamp R., Hormes B., Brock O., et al. Modelling protein complexes with crosslinking mass spectrometry and deep learning. Nat. Commun. 2024;15:7866. PubMed PMC
Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC