Evaluation of andrographolide from Andrographis paniculata against drug-resistant and H37Rv strains of Mycobacterium tuberculosis
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40581680
DOI
10.1007/s12223-025-01291-3
PII: 10.1007/s12223-025-01291-3
Knihovny.cz E-zdroje
- Klíčová slova
- Andrographolide, Antimycobacterial, Minimum inhibitory concentration, Multidrug-resistant, Tuberculosis,
- Publikační typ
- časopisecké články MeSH
Tuberculosis (TB) remains a major global health concern, particularly due to the emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains. While previous studies have suggested andrographolide as a potential antimycobacterial agent based on in silico predictions, limited empirical evidence exists on its direct efficacy against MDR-TB. This study systematically evaluates the antimycobacterial activity of andrographolide through the microbroth dilution method against M. tuberculosis H37Rv and three distinct MDR strains. The minimum inhibitory concentrations (MICs) were determined using Middlebrook 7H9 medium, with rifampicin and isoniazid as positive controls. Andrographolide completely inhibited M. tuberculosis H37Rv at an MIC of 125 µg/mL, while MICs for MDR strains varied (500 µg/mL, 125 µg/mL, and 250 µg/mL for MDR-Isolates 1, 2, and 3, respectively). Unlike previous studies that primarily relied on computational docking models, our findings provide direct experimental validation of andrographolide's strain-specific efficacy, demonstrating its potential as a promising lead compound for anti-tubercular drug development. These results underscore the need for further preclinical investigations to explore its therapeutic applications in combating drug-resistant TB.
Department of Zoology St Xavier's College Palayamkottai Tirunelveli Tamil Nadu India 627002
Entomology Research Institute Loyola Campus Chennai India 600034
PG Amd Research Department of Advanced Zoology and Biotechnology Loyola College Chennai India 600034
Zobrazit více v PubMed
Aro AO, Dzoyem JP, Hlokwe TM, Eloff JN, McGaw LJ (2015) Some South African Rubiaceae tree leaf extracts have antimycobacterial activity against pathogenic and non-pathogenic Mycobacterium species. Phytother Res 29(7):1004–1010. https://doi.org/10.1002/ptr.5338 PubMed DOI
Bernaitis L, Shenoy VP, Ashok M, Mithun Nath MN, Shenoy RP (2013) Effects of selective medicinal plants against multi-drug resistant Mycobacterium tuberculosis strains. Res J Pharm Biol Chem Sci 4(3):812–817
Bhopale S, Borkar A, Deshmukh N, Musale S, More R (2023) A review on anti-tubercular plants and current trends. Int J Res Technol Innov 8(3):393–398
Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23. https://doi.org/10.1186/1471-2180-6-23 PubMed DOI PMC
Burgos RA, Hidalgo MA, Carretta MD et al (2009) Immunomodulatory activities induced by Andrographis paniculata. In: Govil JN, Singh VK (eds) Recent Progress in Medicinal Plants (vol 24), Standardization of Herbal/Ayurvedic Formulations. Studium Press, Houston (Texas), pp 425-–441
Chao WW, Lin BF (2010) Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med 5:17. https://doi.org/10.1186/1749-8546-5-17 PubMed DOI PMC
Chetri S (2023) The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: urgent need for an improved new generation of EPIs. Front Microbiol 14:1149418. https://doi.org/10.3389/fmicb.2023.1149418 PubMed DOI PMC
Dafur GS, Harun A, Kub TNT, Bakar RA, Harun A (2024) A systematic review on the antimicrobial activity of andrographolide. J Microbiol Biotechnol 35:e2408028. https://doi.org/10.4014/jmb.2408.08028 PubMed DOI PMC
Dhiman A, Goyal J, Sharma K, Nanda A, Dhiman S (2012) A review on medicinal prospectives of Andrographis paniculata Nees. J Pharm Sci Innov 1(1):1–4
Duraipandiyan V, Savarimuthu I, Khan IA, Alodaini HA, Hatamleh AA, Antony S (2024) Antimycobacterial activity of plant compounds against extensively drug-resistant (XDR-TB) Mycobacterium tuberculosis. J King Saud Univ Sci 36:103351. https://doi.org/10.1016/j.jksus.2023.103351 DOI
Gopinath R, Sneha S, Manickan E (2016) Anti-mycobacterial activity of Acalypha indica and Andrographis paniculata, the Indian medicinal plants against Mycobacterium tuberculosis (MTB). Int J Pharmacy Pharmacol Res 7(4):33–43
Ismail NA, Mvusi L, Nanoo A, Dreyer AW, Omar SV, Babatunde S et al (2018) Prevalence of drug-resistant tuberculosis and imputed burden in South Africa: a national and sub-national cross-sectional survey. Lancet Infect Dis 18(7):779–787. https://doi.org/10.1016/S1473-3099(18)30181-4 PubMed DOI PMC
Makane VB, Krishna VS, Krishna EV, Shukla M, Mahizhaveni B, Misra S et al (2019) Novel 1,3,4-oxadiazoles as antitubercular agents with limited activity against drug-resistant tuberculosis. Future Med Chem 11(6):499–510. https://doi.org/10.4155/fmc-2018-0378 PubMed DOI
Mariita RM, Okemo PO, Orodho JA, Kirimuhuzya C, Otieno JN, Magadula JJ (2010) Efficacy of 13 medicinal plants used by indigenous communities around Lake Victoria, Kenya, against tuberculosis, diarrhoea causing bacteria, and Candida albicans. Int J Phytomed 2(3):771–791
Mariita RM, Orodho JA, Okemo PO, Mbugua PK (2010) Antifungal, antibacterial and antimycobacterial activity of Entada abysinnica Steudel ex A Rich (Fabaceae) methanol extract. Pharmacogn Res 2(3):163–168. https://doi.org/10.4103/0974-8490.65511 DOI
Marrakchi H, Lanéelle MA, Daffé M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21(1):67–85. https://doi.org/10.1016/j.chembiol.2013.11.011 PubMed DOI
Mitscher LA, Baker WR (1998) A search for novel chemotherapy against tuberculosis amongst natural products. Pure Appl Chem 70(2):365–271. https://doi.org/10.1351/pac199870020365 DOI
Mukherjee PK (2002) Quality control of herbal drugs. 1st edn. Business Horizon Pharmaceutical Publishers, New Delhi, pp 380–422
Nadkarni KM (1976) Indian Materia Medica. Vol 1. Popular Prakashan, Bombay, p 1142
Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285 PubMed DOI
Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P (2014) Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pac J Trop Dis 4(3):213–222 DOI PMC
Pandya K, Patel P, Patel G, Parikh V (2012) In vitro antimycobacterial study of essential oil of few selected plants. Int J Univ Pharm Life Sci 2(2):523–529
Prabu A, Hassan S, Prabuseenivasan SAS, Hanna LE, Kumar V (2015) Andrographolide: a potent antituberculosis compound that targets Aminoglycoside 2′-N-acetyltransferase in Mycobacterium tuberculosis. J Mol Graph Model 61:133–140. https://doi.org/10.1016/j.jmgm.2015.07.001
Riaz M, Zia M, Saad B (2016) Anthocyanins and human health: biomolecular and therapeutic aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-26456-1
Satyanarayana S, Kwan A, Daniels B et al (2016) Use of standardised patients to assess antibiotic dispensing for tuberculosis by pharmacies in urban India: a cross-sectional study. Lancet Infect Dis 16:1261–1268. https://doi.org/10.1016/S1473-3099(16)30247-0 PubMed DOI PMC
Saxena RC, Singh R, Kumar P et al (2010) A randomized double-blind placebo-controlled clinical evaluation of extract of Andrographis paniculata (KalmCold) in patients with uncomplicated upper respiratory tract infection. Phytomedicine 17:178–185 PubMed DOI
Tan MCS, Oyong GG, Shen CC, Ragasa CY (2016) Chemical composition of Andrographis paniculata (Burm.f.) Nees. Res J Pharm Biol Chem Sci 7(6):2405–2408
Tawde KV, Gacche RN, Pund MM (2012) Evaluation of selected Indian traditional folk medicinal plants against Mycobacterium tuberculosis with antioxidant and cytotoxicity study. Asian Pac J Trop Dis 2:S685–S691 DOI
Toppo E, Darvin SS, Esakkimuthu S, Nayak MK, Balakrishna K, Sivasankaran K, Pandikumar P, Ignacimuthu S, Al-Dhabi NA (2017) Effect of two andrographolide derivatives on cellular and rodent models of non-alcoholic fatty liver disease. Biomed Pharmacother 95:402–411. https://doi.org/10.1016/j.biopha.2017.08.071 PubMed DOI
Vilvest J, Milton MCJ, Yagoo A, Balakrishna K (2024) Structural elucidation of andrographolide from Andrographis paniculata and its ovicidal, larvicidal, and pupicidal activities against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Exp Parasitol 267:108858. https://doi.org/10.1016/j.exppara.2024.108858 PubMed DOI
World Health Organization (2001) Global tuberculosis control: surveillance, planning, financing. World TB report 2001. WHO/CDS/TB/2001.287. World Health Organization, Geneva
World Health Organization (2023) Global tuberculosis report 2023. World Health Organization, Geneva
Yagoo A, Milton MCJ, Vilvest J, Jessie AAA, Balakrishna K (2025) Isolation and investigation of anti-tubercular ilicic acid from Sphaeranthus indicus against Mycobacterium tuberculosis H PubMed DOI