Fecal Microbial Community Profiling Allows Discrimination of Phenotype and Treatment Response in Pediatric Crohn's Disease and Ulcerative Colitis-An International Meta-Analysis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, metaanalýza
PubMed
40583454
PubMed Central
PMC12455605
DOI
10.1093/ibd/izaf135
PII: 8178225
Knihovny.cz E-zdroje
- Klíčová slova
- 16S metagenomics, Crohn’s disease, microbiome, treatment response, ulcerative colitis,
- MeSH
- biologické markery analýza MeSH
- Crohnova nemoc * mikrobiologie farmakoterapie MeSH
- dítě MeSH
- feces * mikrobiologie MeSH
- fenotyp MeSH
- lidé MeSH
- mladiství MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * MeSH
- ulcerózní kolitida * mikrobiologie farmakoterapie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- biologické markery MeSH
- RNA ribozomální 16S MeSH
BACKGROUND AND AIMS: The pathophysiology of pediatric inflammatory bowel disease (PIBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is not entirely understood. Dysregulation of the intestinal microbiome is recognized as both a disease-driving and a potential therapeutic target. This study aimed to systematically analyze gut microbiome compositions and its applicability as a biomarker for disease progress and treatment response. METHODS: Bibliographic and nucleotide databases were searched. Raw 16S-rRNA sequencing reads were subjected to a uniform downstream dada2/phyloseq pipeline to extract taxonomy, community structure, and abundance information. Patient metadata were extracted from publications, and study authors were contacted for further details if required. RESULTS: Twenty-six studies comprising 3956 stool samples (CD 41%, UC 36%, 23% healthy) were included in the analyses. Median age of individuals was 12 (interquartile range 4). Sex distribution was comparable. Alpha diversity was reduced between the healthy and both UC and CD treatment-naïve groups (P < .001) and further reduced with increasing clinical disease activity. Beta diversity revealed altered community structure in treatment-naïve children with PIBD (P < .001). This alteration remained in patients in clinical remission (P < .001). Machine learning models discriminated between treatment-naïve patients with CD or UC with an area under the receiver operating characteristics curve (AUROC) of 98%. Microbial communities differed between patient responders versus nonresponders to treatment (P < .001). Further, microbial community profiling distinguished treatment response (eg, steroid, nutrition, or TNFα) with AUROCs of 82%-90%. CONCLUSIONS: Gut microbial community structure is substantially altered in active and inactive PIBD and may be utilized as a biomarker for differentiating PIBD subtype and predicting treatment response.
We identified 26 studies on the gut microbiome in pediatric patients with IBD compiling a total of 3956 stool samples (CD 41%, UC 36%, 23% healthy) revealing microbial community structures unique to patients with CD and UC. These community patterns allow for the distinction of PIBD type and prediction of treatment response.
Department of Paediatrics 1 Medical University of Innsbruck Innsbruck Austria
Department of Pediatrics University of Toronto Toronto ON Canada
Institute of Cell Biology Biocenter Medical University of Innsbruck Innsbruck Austria
Shaare Zedek Medical Center The Hebrew University of Jerusalem Jerusalem Israel
Zobrazit více v PubMed
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307-317. doi: https://doi.org/ 10.1038/nature10209 PubMed DOI PMC
Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2:17004. doi: https://doi.org/ 10.1038/nmicrobiol.2017.4 PubMed DOI PMC
Dunne C. Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm Bowel Dis. 2001;7(2):136-145. doi: https://doi.org/ 10.1097/00054725-200105000-00010 PubMed DOI
Radjabzadeh D, Boer CG, Beth SA, et al. Diversity, compositional and functional differences between gut microbiota of children and adults. Sci Rep. 2020;10(1):1040. doi: https://doi.org/ 10.1038/s41598-020-57734-z PubMed DOI PMC
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. doi: https://doi.org/ 10.1371/journal.pbio.0050177 PubMed DOI PMC
Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179-184. doi: https://doi.org/ 10.1002/ibd.21339 PubMed DOI PMC
Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382-392. doi: https://doi.org/ 10.1016/j.chom.2014.02.005 PubMed DOI PMC
Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004;53(1):1-4. doi: https://doi.org/ 10.1136/gut.53.1.1 PubMed DOI PMC
Conrad MA, Bittinger K, Ren Y, et al. The intestinal microbiome of inflammatory bowel disease across the pediatric age range. Gut Microbes. 2024;16(1):2317932. doi: https://doi.org/ 10.1080/19490976.2024.2317932 PubMed DOI PMC
Shah R, Cope JL, Nagy-Szakal D, et al. Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis. Gut Microbes. 2016;7(5):384-396. doi: https://doi.org/ 10.1080/19490976.2016.1190073 PubMed DOI PMC
Haberman Y, Tickle TL, Dexheimer PJ, et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest. 2014;124(8):3617-3633. doi: https://doi.org/ 10.1172/JCI75436 PubMed DOI PMC
Olbjørn C, Cvancarova Småstuen M, Thiis-Evensen E, et al. Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease - associations with disease phenotype, treatment, and outcome. Clin Exp Gastroenterol. 2019;12:37-49. doi: https://doi.org/ 10.2147/CEG.S186235 PubMed DOI PMC
Michail S, Durbin M, Turner D, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799-1808. doi: https://doi.org/ 10.1002/ibd.22860 PubMed DOI PMC
Malham M, Lilje B, Houen G, Winther K, Andersen PS, Jakobsen C. The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease. Scand J Gastroenterol. 2019;54(8):969-975. doi: https://doi.org/ 10.1080/00365521.2019.1644368 PubMed DOI
Schirmer M, Denson L, Vlamakis H, et al. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course. Cell Host Microbe. 2018;24(4):600-610.e4. doi: https://doi.org/ 10.1016/j.chom.2018.09.009 PubMed DOI PMC
Kugathasan S, Denson LA, Walters TD, et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet. 2017;389(10080):1710-1718. doi: https://doi.org/ 10.1016/S0140-6736(17)30317-3 PubMed DOI PMC
Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 2017;152(2):313-321.e2. doi: https://doi.org/ 10.1053/j.gastro.2016.10.020 PubMed DOI
Gong D, Yu X, Wang L, Kong L, Gong X, Dong Q. Exclusive enteral nutrition induces remission in pediatric Crohn’s disease via modulation of the gut microbiota. Biomed Res Int. 2017;2017:8102589. doi: https://doi.org/ 10.1155/2017/8102589 PubMed DOI PMC
MacLellan A, Moore-Connors J, Grant S, Cahill L, Langille MGI, Van Limbergen J. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients. 2017;9(5):447. doi: https://doi.org/ 10.3390/nu9050447 PubMed DOI PMC
Kaakoush NO, Day AS, Leach ST, Lemberg DA, Nielsen S, Mitchell HM. Effect of exclusive enteral nutrition on the microbiota of children with newly diagnosed Crohn’s disease. Clin Transl Gastroenterol. 2015;6(1):e71. doi: https://doi.org/ 10.1038/ctg.2014.21 PubMed DOI PMC
Wang Y, Gao X, Ghozlane A, et al. Characteristics of faecal microbiota in paediatric Crohn’s disease and their dynamic changes during infliximab therapy. J Crohns Colitis. 2018;12(3):337-346. doi: https://doi.org/ 10.1093/ecco-jcc/jjx153 PubMed DOI
Kowalska-Duplaga K, Kapusta P, Gosiewski T, et al. Changes in the intestinal microbiota are seen following treatment with infliximab in children with Crohn’s disease. J Clin Med. 2020;9(3):687. doi: https://doi.org/ 10.3390/jcm9030687 PubMed DOI PMC
Höyhtyä M, Korpela K, Saqib S, et al. Quantitative fecal microbiota profiles relate to therapy response during induction with tumor necrosis factor α antagonist infliximab in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2023;29(1):116-124. doi: https://doi.org/ 10.1093/ibd/izac182 PubMed DOI PMC
Hyams JS, Ferry GD, Mandel FS, et al. Development and validation of a pediatric Crohn’s disease activity index. J Pediatr Gastroenterol Nutr. 1991;12(4):439-447. PubMed
Turner D, Griffiths AM, Walters TD, et al. Mathematical weighting of the pediatric Crohn’s disease activity index (PCDAI) and comparison with its other short versions. Inflamm Bowel Dis. 2012;18(1):55-62. doi: https://doi.org/ 10.1002/ibd.21649 PubMed DOI
Turner D, Otley AR, Mack D, et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterology. 2007;133(2):423-432. doi: https://doi.org/ 10.1053/j.gastro.2007.05.029 PubMed DOI
Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021;71(12). doi: https://doi.org/ 10.1099/ijsem.0.005130 PubMed DOI
Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data. Genome Biol. 2020;21(1):191. doi: https://doi.org/ 10.1186/s13059-020-02104-1 PubMed DOI PMC
Douglas GM, Hansen R, Jones CMA, et al. Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn’s disease. Microbiome. 2018;6(1):13. doi: https://doi.org/ 10.1186/s40168-018-0398-3 PubMed DOI PMC
Zuo W, Wang B, Bai X, et al. 16S rRNA and metagenomic shotgun sequencing data revealed consistent patterns of gut microbiome signature in pediatric ulcerative colitis. Sci Rep. 2022;12(1):6421. doi: https://doi.org/ 10.1038/s41598-022-07995-7 PubMed DOI PMC
Assa A, Butcher J, Li J, et al. Mucosa-associated ileal microbiota in new-onset pediatric Crohn’s disease. Inflamm Bowel Dis. 2016;22(7):1533-1539. doi: https://doi.org/ 10.1097/MIB.0000000000000776 PubMed DOI
Liu TC, Gurram B, Baldridge MT, et al. Paneth cell defects in Crohn’s disease patients promote dysbiosis. JCI Insight. 2016;1(8):e86907. doi: https://doi.org/ 10.1172/jci.insight.86907 PubMed DOI PMC
Wang Y, Gao X, Zhang X, et al. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn’s disease. Gut Microbes. 2021;13(1):1-18. doi: https://doi.org/ 10.1080/19490976.2020.1865708 PubMed DOI PMC
Diederen K, Li JV, Donachie GE, et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease. Sci Rep. 2020;10(1):18879. doi: https://doi.org/ 10.1038/s41598-020-75306-z PubMed DOI PMC
Ijaz UZ, Quince C, Hanske L, et al. The distinct features of microbial “dysbiosis” of Crohn’s disease do not occur to the same extent in their unaffected, genetically-linked kindred. PLoS One. 2017;12(2):e0172605. doi: https://doi.org/ 10.1371/journal.pone.0172605 PubMed DOI PMC
Jones CMA, Connors J, Dunn KA, et al. Bacterial taxa and functions are predictive of sustained remission following exclusive enteral nutrition in pediatric Crohn’s disease. Inflamm Bowel Dis. 2020;26(7):1026-1037. doi: https://doi.org/ 10.1093/ibd/izaa001 PubMed DOI PMC
Sprockett D, Fischer N, Boneh RS, et al. Treatment-specific composition of the gut microbiota is associated with disease remission in a pediatric Crohn’s disease cohort. Inflamm Bowel Dis. 2019;25(12):1927-1938. doi: https://doi.org/ 10.1093/ibd/izz130 PubMed DOI PMC
Jacobs JP, Goudarzi M, Singh N, et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell Mol Gastroenterol Hepatol. 2016;2(6):750-766. doi: https://doi.org/ 10.1016/j.jcmgh.2016.06.004 PubMed DOI PMC
Alipour M, Zaidi D, Valcheva R, et al. Mucosal barrier depletion and loss of bacterial diversity are primary abnormalities in paediatric ulcerative colitis. J Crohns Colitis. 2016;10(4):462-471. doi: https://doi.org/ 10.1093/ecco-jcc/jjv223 PubMed DOI PMC
Turner D, Bishai J, Reshef L, et al. Antibiotic cocktail for pediatric acute severe colitis and the microbiome: the PRASCO randomized controlled trial. Inflamm Bowel Dis. 2020;26(11):1733-1742. doi: https://doi.org/ 10.1093/ibd/izz298 PubMed DOI
Pai N, Popov J, Hill L, Hartung E, Grzywacz K, Moayyedi P; McMaster Pediatric Fecal Microbiota Transplant Research Collaboration. Results of the first pilot randomized controlled trial of fecal microbiota transplant in pediatric ulcerative colitis: lessons, limitations, and future prospects. Gastroenterology. 2021;161(2):388-393.e3. doi: https://doi.org/ 10.1053/j.gastro.2021.04.067 PubMed DOI
Nusbaum DJ, Sun F, Ren J, et al. Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients. FEMS Microbiol Ecol. 2018;94(9):fiy133. doi: https://doi.org/ 10.1093/femsec/fiy133 PubMed DOI PMC
Wang X, Xiao Y, Xu X, et al. Characteristics of fecal microbiota and machine learning strategy for fecal invasive biomarkers in pediatric inflammatory bowel disease. Front Cell Infect Microbiol. 2021;11:711884. doi: https://doi.org/ 10.3389/fcimb.2021.711884 PubMed DOI PMC
Connors J, Dunn KA, Allott J, et al. The relationship between fecal bile acids and microbiome community structure in pediatric Crohn’s disease. ISME J. 2020;14(3):702-713. doi: https://doi.org/ 10.1038/s41396-019-0560-3 PubMed DOI PMC
Hart L, Farbod Y, Szamosi JC, et al. Effect of exclusive enteral nutrition and corticosteroid induction therapy on the gut microbiota of pediatric patients with inflammatory bowel disease. Nutrients. 2020;12(6):1691. doi: https://doi.org/ 10.3390/nu12061691 PubMed DOI PMC
Cortez RV, Moreira LN, Padilha M, et al. Gut microbiome of children and adolescents with primary sclerosing cholangitis in association with ulcerative colitis. Front Immunol. 2021;11:598152. doi: https://doi.org/ 10.3389/fimmu.2020.598152 PubMed DOI PMC
Iwasawa K, Suda W, Tsunoda T, et al. Characterisation of the faecal microbiota in Japanese patients with paediatric-onset primary sclerosing cholangitis. Gut. 2017;66(7):1344-1346. doi: https://doi.org/ 10.1136/gutjnl-2016-312533 PubMed DOI PMC
Del Chierico F, Cardile S, Baldelli V, et al. Characterization of the gut microbiota and mycobiota in Italian pediatric patients with primary sclerosing cholangitis and ulcerative colitis. Inflamm Bowel Dis. 2024;30(4):529-537. doi: https://doi.org/ 10.1093/ibd/izad203 PubMed DOI PMC
Hoelz H, Heetmeyer J, Tsakmaklis A, et al. Is autologous fecal microbiota transfer after exclusive enteral nutrition in pediatric Crohn’s disease patients rational and feasible? Data from a feasibility test. Nutrients. 2023;15(7):1742. doi: https://doi.org/ 10.3390/nu15071742 PubMed DOI PMC
Hurych J, Mascellani Bergo A, Lerchova T, et al. Faecal bacteriome and metabolome profiles associated with decreased mucosal inflammatory activity upon anti-TNF therapy in paediatric Crohn’s disease. J Crohns Colitis. 2024;18(1):106-120. doi: https://doi.org/ 10.1093/ecco-jcc/jjad126 PubMed DOI PMC
Raygoza Garay JA, Turpin W, Lee SH, et al. ; CCC GEM Project Research Consortium. Gut microbiome composition is associated with future onset of Crohn’s disease in healthy first-degree relatives. Gastroenterology. 2023;165(3):670-681. doi: https://doi.org/ 10.1053/j.gastro.2023.05.032 PubMed DOI
Turner D, Ricciuto A, Lewis A, et al. ; International Organization for the Study of IBD. STRIDE-II: an update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 2021;160(5):1570-1583. doi: https://doi.org/ 10.1053/j.gastro.2020.12.031 PubMed DOI
O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925. doi: https://doi.org/ 10.3389/fmicb.2016.00925 PubMed DOI PMC
Ventin-Holmberg R, Eberl A, Saqib S, et al. Bacterial and fungal profiles as markers of infliximab drug response in inflammatory bowel disease. J Crohns Colitis. 2021;15(6):1019-1031. doi: https://doi.org/ 10.1093/ecco-jcc/jjaa252 PubMed DOI
Dijk S, Jarman M, Zhang Z, et al. ; Canadian Children IBD Network. Pre-diagnosis diet predicts response to exclusive enteral nutrition and correlates with microbiome in pediatric Crohn disease. Nutrients. 2024;16(7):1033. doi: https://doi.org/ 10.3390/nu16071033 PubMed DOI PMC