Disease-specific U1 spliceosomal RNA mutations in mature B-cell neoplasms
Status Publisher Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
RG-202012-00245
European Hematology Association (EHA)
PubMed
40588565
DOI
10.1038/s41375-025-02667-7
PII: 10.1038/s41375-025-02667-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Recurrent mutations in the third base of U1 spliceosomal RNA responsible for marked splicing and expression abnormalities have been described in chronic lymphocytic leukemia (CLL) and some solid tumors. However, the clinical significance of these mutations in large and independent CLL cohorts as well as their presence in other B-cell neoplasms is unknown. Here we characterized U1 mutations in 1670 CLL and 363 mature B-cell lymphomas. We confirmed that the g.3A>C U1 mutation is found in 3.5% of CLL, which conferred rapid disease progression independently of the main biological and clinical prognostic markers of the disease. Additionally, a recurrent g.9C>T mutation was found in 1.5% of CLL causing downstream splicing alterations and associated with adverse prognosis. We also identified a g.4C>T mutation in 10% of diffuse large B-cell lymphomas of the germinal center subtype and a g.7A>G mutation in 30% of EBV-negative Burkitt lymphomas, both of which altered the splicing pattern of multiple genes. This study reveals novel, recurrent, and tumor-specific U1 mutations in mature B-cell neoplasms with biological and prognostic implications, thus establishing U1 as a novel pan-B-cell malignancy driver gene.
Barcelona Supercomputing Center Barcelona Spain
Canada's Michael Smith Genome Sciences Centre British Columbia Cancer Agency Vancouver BC Canada
Center for Cancer Research Massachusetts General Hospital Boston MA USA
Central European Institute of Technology Masaryk University Brno Czech Republic
Centro de Investigación Biomédica en Red de Cáncer Barcelona Spain
Clinical Genetics and Genomics Karolinska University Hospital Stockholm Sweden
Computational Biology Program Ontario Institute for Cancer Research Toronto ON Canada
Department of Data Science Dana Farber Cancer Institute Boston MA USA
Department of Haematology University Hospitals Dorset Bournemouth UK
Department of Immunology Erasmus MC University Medical Center Rotterdam Netherlands
Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA
Department of Medicine Brigham and Women's Hospital Boston MA USA
Department of Medicine Hematology unit University of Padua Padua Italy
Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC Canada
Department of Molecular Genetics University of Toronto Toronto ON Canada
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Molecular Pathology University Hospitals Dorset Bournemouth UK
Department of Pathology Massachusetts General Hospital Boston MA USA
Division of Hematology Mayo Clinic Rochester MN USA
European Molecular Biology Laboratory Heidelberg Germany
Facultat de Medicina i Ciències de la Salut Universitat de Barcelona Barcelona Spain
Harvard Medical School Boston MA USA
Harvard University Cambridge MA USA
Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece
Hospital Clínic of Barcelona Barcelona Spain
Hospital Universitario 12 de Octubre Madrid Spain
Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece
Instituto de Investigación Biomédica de Salamanca Salamanca Spain
Medical Faculty Heidelberg Heidelberg University Heidelberg Germany
Stanford School of Medicine Stanford CA USA
Strategic Research Program on CLL IRCCS San Raffaele Hospital Milano Italy
The Broad Institute of MIT and Harvard Cambridge MA USA
The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
See more in PubMed
Shuai S, Suzuki H, Diaz-Navarro A, Nadeu F, Kumar SA, Gutierrez-Fernandez A, et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature. 2019;574:712–6. PubMed DOI
Suzuki H, Kumar SA, Shuai S, Diaz-Navarro A, Gutierrez-Fernandez A, De Antonellis P, et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature. 2019;574:707–11. PubMed DOI PMC
Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7. PubMed DOI
Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54. PubMed DOI
Knisbacher BA, Lin Z, Hahn CK, Nadeu F, Duran-Ferrer M, Stevenson KE, et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat Genet. 2022;54:1664–74. PubMed DOI PMC
Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42. PubMed DOI
Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016;48:253–64. PubMed DOI PMC
Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526:519–24. PubMed DOI
Dietrich S, Oleś M, Lu J, Sellner L, Anders S, Velten B, et al. Drug-perturbation-based stratification of blood cancer. J Clin Invest. 2018;128:427–45. PubMed DOI
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30. PubMed DOI PMC
Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood. 2013;122:1256–65. PubMed DOI PMC
Arthur SE, Jiang A, Grande BM, Alcaide M, Cojocaru R, Rushton CK, et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun. 2018;9:4001. PubMed DOI PMC
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. DOI
Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood. 2019;133:1313–24. PubMed DOI PMC
Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M, Navarro A, et al. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood. 2020;136:1419–32. PubMed DOI PMC
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11. PubMed DOI
Tobin G, Thunberg U, Johnson A, Thorn I, Soderberg O, Hultdin M, et al. Somatically mutated Ig VH3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood. 2002;99:2262–4. PubMed DOI
Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood. 2007;109:259–70. PubMed DOI
Maity PC, Bilal M, Koning MT, Young M, van Bergen CAM, Renna V, et al. IGLV3-21*01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proc Natl Acad Sci USA. 2020;117:4320–7. PubMed DOI PMC
Nadeu F, Royo R, Clot G, Duran-Ferrer M, Navarro A, Martín S, et al. IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood. 2021;137:2935–46. PubMed DOI PMC
Syrykh C, Pons-Brun B, Russiñol N, Playa-Albinyana H, Baumann T, Duran-Ferrer M, et al. IGLV3-21R110 mutation has prognostic value in patients with treatment-naive chronic lymphocytic leukemia. Blood Adv. 2023;7:7384–91. PubMed DOI PMC
Nadeu F, Clot G, Delgado J, Martín-García D, Baumann T, Salaverria I, et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia. 2018;32:645–53. PubMed DOI
Strefford JC, Sutton L-A, Baliakas P, Agathangelidis A, Malčíková J, Plevova K, et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 2013;27:2196–9. PubMed DOI
Sutton L-A, Young E, Baliakas P, Hadzidimitriou A, Moysiadis T, Plevova K, et al. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica. 2016;101:959–67. PubMed DOI PMC
Stamatopoulos B, Smith T, Crompot E, Pieters K, Clifford R, Mraz M, et al. The light chain IgLV3-21 defines a new poor prognostic subgroup in chronic lymphocytic leukemia: results of a multicenter study. Clin Cancer Res. 2018;24:5048–57. PubMed DOI
Ramsay AJ, Rodríguez D, Villamor N, Kwarciak A, Tejedor JR, Valcárcel J, et al. Frequent somatic mutations in components of the RNA processing machinery in chronic lymphocytic leukemia. Leukemia. 2013;27:1600–3. PubMed DOI
Wan Y, Wu CJ. SF3B1 mutations in chronic lymphocytic leukemia. Blood. 2013;121:4627–34. PubMed DOI PMC
Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407. PubMed DOI PMC
Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24:679–90. PubMed DOI PMC
López C, Kleinheinz K, Aukema SM, Rohde M, Bernhart SH, Hübschmann D, et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun. 2019;10:1459. PubMed DOI PMC