Practical design of variable fractional-order capacitors with a single tuning feature using field effect transistors and variable capacitance diodes

. 2025 Jul 01 ; 15 (1) : 21892. [epub] 20250701

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40594546
Odkazy

PubMed 40594546
PubMed Central PMC12219166
DOI 10.1038/s41598-025-07319-5
PII: 10.1038/s41598-025-07319-5
Knihovny.cz E-zdroje

This paper presents two discrete circuit solutions for realizing passive, electronically adjustable constant-phase elements, specifically half-order capacitors with a -45° phase shift. Fractional-order capacitors with electronically adjustable pseudocapacitance are especially useful for designing tunable filters and oscillators. The ability to adjust pseudocapacitance electronically and continuously is a major improvement over traditional passive solutions. Their pseudocapacitance can be controlled by a DC voltage, allowing key parameters like the cut-off or oscillation frequency to be tuned. Two presented design approaches differ in accuracy, tuning range, and signal-handling capability. Both solutions maintain a constant phase over one frequency decade, with a phase ripple within ± 2°. The tuning range spans from hundreds of Hz to several MHz. Presented solutions allow pseudocapacitance tuning in range of hundreds of nano F/sec0.5 (with varicaps) and tens of micro F/sec0.5 (with MOSFETs). The MOS-based circuit offers a tuning ratio of 7 but shows a 19% deviation between simulation and measurement. It also suffers from notable nonlinearity, with undistorted operation limited to signal levels up to 20 mV peak-to-peak. The varicap-based solution achieves a tuning ratio of 5, with high accuracy (up to 6% error), and handles input signals in the hundreds of mV with acceptable distortion. PSpice simulations and laboratory measurements confirm the performance of both designs.

Zobrazit více v PubMed

Elwakil, A. S. Fractional-order circuits and systems: an emerging interdisciplinary research area.

Freeborn, T. J. A survey of fractional-order circuit models for biology and biomedicine.

Podlubny, I.

Vastarouchas, C., Tsirimokou, G. & Psychalinos, C. Extraction of Cole-Cole model parameters through low-frequency measurements.

Vastarouchas, C., Psychalinos, C., Elwakil, A. S. & Al-Ali, A. A. Novel two-measurements-only Cole-Cole bio-impedance parameters extraction technique.

Ibba, P. et al. Bio-impedance and circuit parameters: an analysis for tracking fruit ripening.

Lopes, A. M., Machado, J. A. T. & Ramalho, E. On the fractional-order modeling of wine.

Pelc, D., Marion, S. & Basletić, M. Four-contact impedance spectroscopy of conductive liquid samples. PubMed

Slay, J. et al. Distinguishing liquid solutions with alcohol using electrical impedance measurements: preliminary study for food safety applications.

Islam, M., Wahid, K. A., Dinh, A. V. & Bhowmik, P. ‘Model of dehydration and assessment of moisture content on onion using EIS’. PubMed PMC

Patil, A. C., Fernandez la Villa, A., Mugilvannan, A. K. & Elejalde, U. Electrochemical investigation of edible oils: experimentation, electrical signatures, and a supervised learning–case study of adulterated peanut oils. PubMed

Tapadar, A. & Adhikary, A. High Sensitivity Milk Adulteration Detector Using Fractional Order Colpitts Oscillator, 2023 IEEE Conference on AgriFood Electronics (CAFE), Torino, Italy, pp. 85–88. 10.1109/CAFE58535.2023.10292088 (2023).

Sanchez, B., Li, J., Geisbush, T., Bardia, R. B. & Rutkove, S. B. ‘Impedance alterations in healthy and diseased mice during electrically induced muscle contraction’. PubMed

Prasad, A. & Roy, M. ‘Bioimpedance analysis of vascular tissue and fluid flow in human and plant body: A review.

Fu, B. & Freeborn, T. J. ‘Cole-impedance parameters representing biceps tissue bioimpedance in healthy adults and their alterations following eccentric exercise,’’ J. PubMed PMC

Wohlgemuth, K. J., Freeborn, T. J., Southall, K. E., Hare, M. M. & Mota, J. A. Can segmental bioelectrical impedance be used as a measure of muscle quality? PubMed

AboBakr, A., Said, L. A., Madian, A. H. & Elwakil, A. S. Radwan,‘‘Experimental comparison of integer/fractional-order electrical models of plant’’.

Kapoulea, S., Psychalinos, C. & Elwakil, A. S. Realization of Cole-Davidson function-based impedance models: application on plant tissues.

Panagiotis Bertsias, S., Kapoulea, C., Psychalinos & Elwakil, A. S. A collection of interdisciplinary applications of fractional-order circuits.

Stavroula Kapoulea, C., Psychalinos & Elwakil, A. S. Power law filters: A new class of fractional-order filters without a fractional-order laplacian operator.

Nako, J., Psychalinos, C., Elwakil, A. S. & Jurisic, D. Design of Higher-Order fractional filters with fully controllable frequency characteristics.

Nako, J., Psychalinos, C., Elwakil, A. S. & Minaei, S. Non-integer order generalized filters designs.

Nako, J., Psychalinos, C. & Elwakil, A. S. One active element implementation of fractional-order Butterworth and Chebyshev filters.

Nako, J., Psychalinos, C., Khateb, F. & Elwakil, A. S. Bilinear double-order filter designs and application examples.

Sotner, R. et al. On the performance of electronically tunable fractional-order oscillator using grounded resonator concept.

Varshney, G., Pandey, N. & Pandey, R. Design and implementation of OTA based fractional-order oscillator.

Tapadar, A., Sachan, S. & Adhikary, A. Complete design guidelines for Fractional-Order colpitts oscillator with Non-ideal Op-Amp.

Tavazoei, M. S. Frequency content preservation in fractional Multi-Frequency oscillators despite reducing the number of energy storage elements.

Tavazoei, M. S. Closed-form oscillatory condition in electrical circuits containing two fractional order elements.

Mohapatra, A. S., Zimmermann, S. & Biswas, K. Designing fractional oscillator for sensing different types of lossy capacitors.

Sivarama Krishna, M., Das, S., Biswas, K. & Goswami, B. Fabrication of a fractional order capacitor with desired specifications: A study on process identification and characterization.

Mondal, D. & Biswas, K. Performance study of fractional order integrator using single-component fractional order element.

Adhikary, A., Khanra, M., Sen, S. & Biswas, K. Realization of a carbon nanotube based electrochemical fractor, 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2329–2332. 10.1109/ISCAS.2015.7169150 (2015).

Ushakov, P., Shadrin, A., Kubanek, D. & Koton, J. Passive fractional-order components based on resistive-capacitive circuits with distributed parameters, 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna, Austria, 2016, 638–642. 10.1109/TSP.2016.7760960 (2016).

Petrzela, J. Accurate constant phase elements dedicated for audio signal processing.

Kapoulea, S., Psychalinos, C. & Elwakil, A. S. Single active element implementation of fractional-order differentiators and integrators.

Valsa, J., Dvořák, P. & Friedl, M. Network model of the CPE.

Valsa, J. & Vlach, J. RC models of a constant phase element.

Sotner, R. et al. Synthesis and design of constant phase elements based on the multiplication of electronically controllable bilinear immittances in practice.

Sotner, R., Polak, L., Jerabek, J. & Petrzela, J. Simple two operational transconductance amplifiers-based electronically controllable bilinear two Port for fractional-order synthesis.

Prommee, P. & Pienpichayapong, P. Reconfigurable Fractional-Order operator and bandwidth expansion suitable for PIα controller.

Mijat, N., Jurisic, D. & Moschytz, G. S. Analog modeling of Fractional-Order elements: A classical circuit theory approach.

Sotner, R., Domansky, O., Langhammer, L. & Petrzela, J. Comparison of Simple Design Methods for Voltage Controllable Resistance, 2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA), Bratislava, Slovakia, 1–6. 10.1109/RADIOELEKTRONIKA49387.2020.9092366 (2020).

BS170 / MMBF170 -N-Channel Enhancement Mode Field Effect Transistor BS170 / MMBF170 N-Channel Enhancement Mode Field Effect Transistor General Description. Accessed: Dec. 07, 2024. [Online]. Available: https://img.gme.cz/files/eshop_data/eshop_data/2/213-008/dsh.213-008.2.pdf (2010).

Siemens Silicon Variable Capacitance Diode BB112. [online] Available: https://datasheetspdf.com/pdf/493437/SiemensGroup/BB112/1. Accessed December 07 2024 (2024).

Standard.dio. - LTwiki-Wiki for LTspice, ltwiki.org. https://ltwiki.org/index.php?title=Standard.dio

Models, S. P. I. C. E. & Rectifiers Diodes and Electronics Textbook, www.allaboutcircuits.com. https://www.allaboutcircuits.com/textbook/semiconductors/chpt-3/spice-models/

Spice Modell für BB112, Mikrocontroller.net, Aug. 07. (2013). https://www.mikrocontroller.net/topic/304813. Accessed December 07 2024 (2013).

Yucel, F. & Yuce, E. A new electronically fine tunable grounded voltage controlled positive resistor.

Arbel, A. F. & Goldminz, L. Output stage for current-mode feedback amplifiers, theory and applications.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...