One-year Outcomes of Permanent Pacemaker Implantation after Transcatheter Aortic Valve Replacement: CONDUCT Registry: A Propensity Score-Matched Comparison

. 2025 ; 14 () : e14. [epub] 20250624

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40607011

OBJECTIVES: The occurrence of new conduction abnormalities necessitating permanent pacemaker implantation (PPI) is a complication of transcatheter aortic valve replacement (TAVR). Previous studies have shown inconsistent results about the clinical impact of new PPI after TAVR. METHODS: CONDUCT was a prospective observational registry that enrolled 295 patients undergoing TAVR at four European centres. The primary goal of this registry was to compare 1-year clinical outcomes in TAVR patients with or without PPI, using one-to-four propensity score matched (PSM) analysis. It also assessed major adverse cardiac events (MACE) in patients undergoing right ventricular pacing after PPI. RESULTS: Out of 160 PSM patients, 36 underwent PPI and the other 124 had no PPI within 30 days post-TAVR. The median age of the patients was 80 years, with more men (80.6% and 84.7% in patients with and without PPI, respectively) and similar EuroSCORE II and Society of Thoracic Surgeons scores. Patients with PPI had higher diabetes prevalence (p=0.055) and lower left ventricular ejection fraction percentages (p=0.034), but higher systolic pulmonary artery pressure (p=0.013) than those without PPI. However, these differences diminished after PSM. At 1 year, PPI patients had a nonsignificant but slightly higher incidence of MACE (22.2% versus 13.7%; p=0.216) (HR 1.63; 95% CI [0.72-3.71]) driven by increased heart failure (11.1% versus 2.4%; p=0.046) (HR 5.05; 95% CI [1.09-23.4]). Freedom from all-cause mortality, cardiovascular death, stroke and endocarditis at 1-year follow-up was comparable between groups. CONCLUSION: Despite a higher incidence of congestive heart failure rehospitalisation in patients undergoing PPI, 1-year clinical outcomes were similar in both groups.

Zobrazit více v PubMed

Smith CR, Leon MB, Mack MJ et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98. doi: 10.1056/NEJMoa1103510. PubMed DOI

Mack MJ, Leon MB, Thourani VH et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695–705. doi: 10.1056/NEJMoa1814052. PubMed DOI

Seeger J, Gonska B, Rottbauer W, Wöhrle J. New generation devices for transfemoral transcatheter aortic valve replacement are superior compared with last generation devices with respect to VARC-2 outcome. Cardiovasc Interv Ther. 2018;33:247–55. doi: 10.1007/s12928-017-0477-6. PubMed DOI

Shivaraju A, Michel J, Frangieh AH et al. Transcatheter aortic and mitral valve-in-valve implantation using the Edwards Sapien 3 heart valve. J Am Heart Assoc. 2018;7:e007767. doi: 10.1161/JAHA.117.007767. PubMed DOI PMC

Nazif TM, Dizon JM, Hahn RT et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC Cardiovasc Interv. 2015;8:60–9. doi: 10.1016/j.jcin.2014.07.022. PubMed DOI

Biancari F, Pykäri J, Savontaus M et al. Early and late pacemaker implantation after transcatheter and surgical aortic valve replacement. Catheter Cardiovasc Interv. 2021;97:E560–8. doi: 10.1002/ccd.29177. PubMed DOI

Cao C, Ang SC, Indraratna P et al. Systematic review and meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis. Ann Cardiothorac Surg. 2013;2:10–23. doi: 10.3978/j.issn.2225-319X.2012.11.09. PubMed DOI PMC

Maeno Y, Abramowitz Y, Kawamori H et al. A highly predictive risk model for pacemaker implantation after TAVR. JACC Cardiovasc Imaging. 2017;10:1139–47. doi: 10.1016/j.jcmg.2016.11.020. PubMed DOI

Agasthi P, Ashraf H, Pujari SH et al. Prediction of permanent pacemaker implantation after transcatheter aortic valve replacement: the role of machine learning. World J Cardiol. 2023;15:95–105. doi: 10.4330/wjc.v15.i3.95. PubMed DOI PMC

Rudolph T, Droppa M, Baan J et al. Modifiable risk factors for permanent pacemaker after transcatheter aortic valve implantation: CONDUCT registry. Open Heart. 2023;10:e002191. doi: 10.1136/openhrt-2022-002191. PubMed DOI PMC

Rück A, Saleh N, Glaser N. Outcomes following permanent pacemaker implantation after transcatheter aortic valve replacement: SWEDEHEART observational study. JACC Cardiovasc Interv. 2021;14:2173–81. doi: 10.1016/j.jcin.2021.07.043. PubMed DOI

Faroux L, Chen S, Muntané-Carol G et al. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and metaanalysis. Eur Heart J. 2020;41:2771–81. doi: 10.1093/eurheartj/ehz924. PubMed DOI

Jørgensen TH, De Backer O, Gerds TA et al. Mortality and heart failure hospitalization in patients with conduction abnormalities after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12:52–61. doi: 10.1016/j.jcin.2018.10.053. PubMed DOI

Auffret V, Boulmier D, Didier R et al. Clinical effects of permanent pacemaker implantation after transcatheter aortic valve implantation: insights from the Nationwide France-TAVI registry. Arch Cardiovasc Dis. 2024;117:213–23. doi: 10.1016/j.acvd.2023.12.011. PubMed DOI

Sweeney MO, Hellkamp AS, Ellenbogen KA et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932–7. doi: 10.1161/01.CIR.0000072769.17295.B1. PubMed DOI

Tops LF, Schalij MJ, Bax JJ. The effects of right ventricular apical pacing on ventricular function and dyssynchrony implications for therapy. J Am Coll Cardiol. 2009;54:764–76. doi: 10.1016/j.jacc.2009.06.006. PubMed DOI

Droppa M, Rudolph TK, Baan J et al. Risk factors for permanent pacemaker implantation in patients receiving a balloon-expandable transcatheter aortic valve prosthesis. Heart Vessels. 2020;35:1735–45. doi: 10.1007/s00380-020-01653-6. PubMed DOI

Lee MY, Yeshwant SC, Chava S, Lustgarten DL. Mechanisms of heart block after transcatheter aortic valve replacement – cardiac anatomy, clinical predictors and mechanical factors that contribute to permanent pacemaker implantation. Arrhythm Electrophysiol Rev. 2015;4:81–5. doi: 10.15420/AER.2015.04.02.81. PubMed DOI PMC

Koneru JN, Jones PW, Hammill EF et al. Risk factors and temporal trends of complications associated with transvenous implantable cardiac defibrillator leads. J Am Heart Assoc. 2018;7:e007691. doi: 10.1161/JAHA.117.007691. PubMed DOI PMC

Scheetz SD, Upadhyay GA. Physiologic pacing targeting the His bundle and left bundle branch: a review of the literature. Curr Cardiol Rep. 2022;24:959–78. doi: 10.1007/s11886-022-01723-3. PubMed DOI

Hochstadt A, Merdler I, Meridor Y et al. Effect of pacemaker implantation after transcatheter aortic valve replacement on long- and mid-term mortality. Heart Rhythm. 2021;18:199–206. doi: 10.1016/j.hrthm.2020.10.013. PubMed DOI

Regueiro A, Abdul-Jawad Altisent O, Del Trigo M et al. Impact of new-onset left bundle branch block and periprocedural permanent pacemaker implantation on clinical outcomes in patients undergoing transcatheter aortic valve replacement: a systematic review and metaanalysis. Circ Cardiovasc Interv. 2016;9:e003635. doi: 10.1161/CIRCINTERVENTIONS.115.003635. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...