Live-cell magnetic manipulation of recycling endosomes reveals their direct effect on actin protrusions to promote invasive migration
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40614209
PubMed Central
PMC12227070
DOI
10.1126/sciadv.adu6361
Knihovny.cz E-zdroje
- MeSH
- aktiny * metabolismus MeSH
- antigeny CD29 metabolismus MeSH
- buněčná membrána metabolismus MeSH
- endocytóza MeSH
- endozomy * metabolismus MeSH
- forminy metabolismus MeSH
- invazivní růst nádoru MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- pohyb buněk * MeSH
- Rab proteiny vázající GTP metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny * MeSH
- antigeny CD29 MeSH
- calponiny MeSH
- forminy MeSH
- MICAL1 protein, human MeSH Prohlížeč
- mikrofilamentové proteiny MeSH
- oxygenasy se smíšenou funkcí MeSH
- Rab proteiny vázající GTP MeSH
Endocytic recycling pathways play key roles in a broad range of cellular processes, and many vesicle trafficking regulators are implicated in progression of disease such as cancer. The Rab11 family (Rab11a, Rab11b, and Rab25) controls the return of internalized cargos to the plasma membrane, and Rab25 has been implicated in the aggressiveness of cancer by promoting invasive migration. However, while Rab25 vesicles distribute to the leading edge of moving cells, how directly they contribute to cell protrusion is not clear. Here, we adopt a magnetogenetic approach that allows direct manipulation of Rab25 positioning to show that localization to the cell periphery drives the formation of F-actin protrusions. We demonstrate that endogenous Rab25 vesicles coordinate the positioning of key cargos, including the actin regulator FMNL1 and integrin β1, with the activation of Rho guanosine triphosphatases at the plasma membrane to generate and maintain F-actin-rich filopodium-like protrusions and promote cancer cell invasive migration in the three-dimensional matrix.
Laboratoire Physico Chimie Curie Institut Curie Paris France
Zobrazit více v PubMed
Jacquemet G., Humphries M. J., Caswell P. T., Role of adhesion receptor trafficking in 3D cell migration. Curr. Opin. Cell Biol. 25, 627–632 (2013). PubMed PMC
Scita G., Di Fiore P. P., The endocytic matrix. Nature 463, 464–473 (2010). PubMed
Golachowska M. R., Hoekstra D., van IJzendoorn S. C. D., Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol. 20, 618–626 (2010). PubMed
Jin H., Tang Y., Yang L., Peng X., Li B., Fan Q., Wei S., Yang S., Li X., Wu B., Huang M., Tang S., Liu J., Li H., Rab GTPases: Central coordinators of membrane trafficking in cancer. Front. Cell Dev. Biol. 9, 648384 (2021). PubMed PMC
Kelly E. E., Horgan C. P., McCaffrey M. W., Rab11 proteins in health and disease. Biochem. Soc. Trans. 40, 1360–1367 (2012). PubMed
Eva R., Crisp S., Marland J. R. K., Norman J. C., Kanamarlapudi V., Ffrench-Constant C., Fawcett J. W., ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J. Neurosci. 32, 10352–10364 (2012). PubMed PMC
Higuchi Y., Ashwin P., Roger Y., Steinberg G., Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 204, 343–357 (2014). PubMed PMC
Sadowski L., Pilecka I., Miaczynska M., Signaling from endosomes: Location makes a difference. Exp. Cell Res. 315, 1601–1609 (2009). PubMed
Vaidžiulytė K., Macé A. S., Battistella A., Beng W., Schauer K., Coppey M., Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking. eLife 11, e69229 (2022). PubMed PMC
Zerial M., McBride H., Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001). PubMed
Caswell P. T., Spence H. J., Parsons M., White D. P., Clark K., Cheng K. W., Mills G. B., Humphries M. J., Messent A. J., Anderson K. I., McCaffrey M. W., Ozanne B. W., Norman J. C., Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007). PubMed
Cho K. H., Lee H. Y., Rab25 and RCP in cancer progression. Arch. Pharm. Res. 42, 101–112 (2019). PubMed
Gebhardt C., Breitenbach U., Richter K. H., Fürstenberger G., Mauch C., Angel P., Hess J., c-Fos-dependent induction of the small Ras-related GTPase Rab11a in skin carcinogenesis. Am. J. Pathol. 167, 243–253 (2005). PubMed PMC
Mitra S., Cheng K. W., Mills G. B., Rab25 in cancer: A brief update. Biochem. Soc. Trans. 40, 1404–1408 (2012). PubMed PMC
Ray G. S., Lee J. R., Nwokeji K., Mills L. R., Goldenring J. R., Increased immunoreactivity for Rab11, a small GTP-binding protein, in low-grade dysplastic Barrett’s epithelia. Lab. Invest. 77, 503–511 (1997). PubMed
Wang S., Hu C., Wu F., He S., Rab25 GTPase: Functional roles in cancer. Oncotarget 8, 64591–64599 (2017). PubMed PMC
Schuh M., An actin-dependent mechanism for long-range vesicle transport. Nat. Cell Biol. 13, 1431–1436 (2011). PubMed PMC
Pylypenko O., Welz T., Tittel J., Kollmar M., Chardon F., Malherbe G., Weiss S., Michel C. I. L., Samol-Wolf A., Grasskamp A. T., Hume A., Goud B., Baron B., England P., Titus M. A., Schwille P., Weidemann T., Houdusse A., Kerkhoff E., Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. eLife 5, e17523 (2016). PubMed PMC
Paul N. R., Allen J. L., Chapman A., Morlan-Mairal M., Zindy E., Jacquemet G., Fernandez del Ama L., Ferizovic N., Green D. M., Howe J. D., Ehler E., Hurlstone A., Caswell P. T., α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J. Cell Biol. 210, 1013–1031 (2015). PubMed PMC
Jacquemet G., Green D. M., Bridgewater R. E., von Kriegsheim A., Humphries M. J., Norman J. C., Caswell P. T., RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex. J. Cell Biol. 202, 917–935 (2013). PubMed PMC
Gemperle J., Harrison T. S., Flett C., Adamson A. D., Caswell P. T., On demand expression control of endogenous genes with DExCon, DExogron and LUXon reveals differential dynamics of Rab11 family members. eLife 11, 1–39 (2022). PubMed PMC
Wilson B., Flett C., Gemperle J., Lawless C., Hartshorn M., Hinde E., Harrison T., Chastney M., Taylor S., Allen J., Norman J. C., Zacharchenko T., Caswell P. T., Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J. Cell Sci. 136, jcs260468 (2023). PubMed PMC
Goldenring J. R., Shen K. R., Vaughan H. D., Modlin I. M., Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J. Biol. Chem. 268, 18419–18422 (1993). PubMed
Jeong B. Y., Cho K. H., Jeong K. J., Park Y. Y., Kim J. M., Rha S. Y., Park C. G., Mills G. B., Cheong J. H., Lee H. Y., Rab25 augments cancer cell invasiveness through a β1 integrin/EGFR/VEGF-A/Snail signaling axis and expression of fascin. Exp. Mol. Med. 50, e435 (2018). PubMed PMC
Cheng K. W., Lahad J. P., Kuo W., Lapuk A., Yamada K., Auersperg N., Liu J., Smith-McCune K., Lu K. H., Fishman D., Gray J. W., Mills G. B., The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med. 10, 1251–1256 (2004). PubMed
Dozynkiewicz M. A., Jamieson N. B., Macpherson I., Grindlay J., van den Berghe P. V. E., von Thun A., Morton J. P., Gourley C., Timpson P., Nixon C., McKay C. J., Carter R., Strachan D., Anderson K., Sansom O. J., Caswell P. T., Norman J. C., Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131–145 (2012). PubMed PMC
van Bergeijk P., Adrian M., Hoogenraad C. C., Kapitein L. C., Optogenetic control of organelle transport and positioning. Nature 518, 111–114 (2015). PubMed PMC
Hoogenraad C. C., Akhmanova A., Howell S. A., Dortland B. R., De Zeeuw C. I., Willemsen R., Visser P., Grosveld F., Galjart N., Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J. 20, 4041–4054 (2001). PubMed PMC
Nijenhuis W., van Grinsven M. M. P., Kapitein L. C., An optimized toolbox for the optogenetic control of intracellular transport. J. Cell Biol. 219, e201907149 (2020). PubMed PMC
Keizer V. I. P., Grosse-Holz S., Woringer M., Zambon L., Aizel K., Bongaerts M., Delille F., Kolar-Znika L., Scolari V. F., Hoffmann S., Banigan E. J., Mirny L. A., Dahan M., Fachinetti D., Coulon A., Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics. Science 377, 489–495 (2022). PubMed
Liße D., Monzel C., Vicario C., Manzi J., Maurin I., Coppey M., Piehler J., Dahan M., Engineered ferritin for magnetogenetic manipulation of proteins and organelles inside living cells. Adv. Mater. 29, 1–7 (2017). PubMed
M. Kappen, J. Gemperle, E. Secret, J. Flesch, P. T. Caswell, M. Coppey, C. Menager, D. Lisse, J. Piehler, Biofunctional coating of synthetic magnetic nanoparticles enables magnetogenetic control of protein functions inside cells. bioRxiv 621314 [Preprint] (2024). 10.1101/2024.10.31.621314. DOI
Hetmanski J. H. R., Jones M. C., Chunara F., Schwartz J. M., Caswell P. T., Combinatorial mathematical modelling approaches to interrogate rear retraction dynamics in 3D cell migration. PLOS Comput. Biol. 17, e1008213 (2021). PubMed PMC
Shukla S., Troitskaia A., Swarna N., Maity B. K., Tjioe M., Bookwalter C. S., Trybus K. M., Chemla Y. R., Selvin P. R., High-throughput force measurement of individual kinesin-1 motors during multi-motor transport. Nanoscale 14, 12463–12475 (2022). PubMed PMC
Schnitzer M. J., Visscher K., Block S. M., Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000). PubMed
Cross R. A., Myosin’s mechanical ratchet. Proc. Natl. Acad. Sci. U.S.A. 103, 8911–8912 (2006). PubMed PMC
Sittewelle M., Royle S. J., Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci. Alliance 7, e202302406 (2024). PubMed PMC
Schlierf B., Fey G. H., Hauber J., Hocke G. M., Rosorius O., Rab11b is essential for recycling of transferrin to the plasma membrane. Exp. Cell Res. 259, 257–265 (2000). PubMed
Matsuzaki F., Shirane M., Matsumoto M., Nakayama K. I., Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol. Biol. Cell 22, 4602–4620 (2011). PubMed PMC
Kaukonen R., Jacquemet G., Hamidi H., Ivaska J., Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat. Protoc. 12, 2376–2390 (2017). PubMed
Hetmanski J. H. R., de Belly H., Busnelli I., Waring T., Nair R. V., Sokleva V., Dobre O., Cameron A., Gauthier N., Lamaze C., Swift J., del Campo A., Starborg T., Zech T., Goetz J. G., Paluch E. K., Schwartz J. M., Caswell P. T., Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev. Cell 51, 460–475.e10 (2019). PubMed PMC
Caswell P. T., Zech T., Actin-based cell protrusion in a 3D matrix. Trends Cell Biol. 28, 823–834 (2018). PubMed PMC
Han Y., Eppinger E., Schuster I. G., Weigand L. U., Liang X., Kremmer E., Peschel C., Krackhardt A. M., Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing. J. Biol. Chem. 284, 33409–33417 (2009). PubMed PMC
Yayoshi-Yamamoto S., Taniuchi I., Watanabe T., FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages. Mol. Cell. Biol. 20, 6872–6881 (2000). PubMed PMC
Nürnberg A., Kitzing T., Grosse R., Nucleating actin for invasion. Nat. Rev. Cancer 11, 117–187 (2011). PubMed
Eisler S. A., Curado F., Link G., Schulz S., Noack M., Steinke M., Olayioye M. A., Hausser A., A rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife 7, e35907 (2018). PubMed PMC
Gaston C., De Beco S., Doss B., Pan M., Gauquelin E., D’Alessandro J., Lim C. T., Ladoux B., Delacour D., EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat. Commun. 12, 2226 (2021). PubMed PMC
Vassilev V., Platek A., Hiver S., Enomoto H., Takeichi M., Catenins steer cell migration via stabilization of front-rear polarity. Dev. Cell 43, 463–479.e5 (2017). PubMed
Alanko J., Ivaska J., Endosomes: Emerging platforms for integrin-mediated FAK signalling. Trends Cell Biol. 26, 391–398 (2016). PubMed
Bagci H., Sriskandarajah N., Robert A., Boulais J., Elkholi I. E., Tran V., Lin Z. Y., Thibault M. P., Dubé N., Faubert D., Hipfner D. R., Gingras A. C., Côté J. F., Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat. Cell Biol. 22, 120–134 (2020). PubMed
Gomez T. S., Kumar K., Medeiros R. B., Shimizu Y., Leibson P. J., Billadeau D. D. D., Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007). PubMed PMC
Mahlandt E. K., Arts J. J. G., van der Meer W. J., van der Linden F. H., Tol S., van Buul J. D., Gadella T. W. J., Goedhart J., Visualizing endogenous Rho activity with an improved localization-based, genetically encoded biosensor. J. Cell Sci. 134, jcs258823 (2021). PubMed PMC
Muller P. A. J., Caswell P. T., Doyle B., Iwanicki M. P., Tan E. H., Karim S., Lukashchuk N., Gillespie D. A., Ludwig R. L., Gosselin P., Cromer A., Brugge J. S., Sansom O. J., Norman J. C., Vousden K. H., Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009). PubMed
Caswell P. T., Chan M., Lindsay A. J., McCaffrey M. W., Boettiger D., Norman J. C., Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 183, 143–155 (2008). PubMed PMC
Bongaerts M., Aizel K., Secret E., Jan A., Nahar T., Raudzus F., Neumann S., Telling N., Heumann R., Siaugue J. M., Ménager C., Fresnais J., Villard C., El Haj A., Piehler J., Gates M. A., Coppey M., Parallelized manipulation of adherent living cells by magnetic nanoparticles-mediated forces. Int. J. Mol. Sci. 21, 6560 (2020). PubMed PMC
Etoc F., Vicario C., Lisse D., Siaugue J.-M. M., Piehler J., Coppey M., Dahan M., Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 15, 3487–3494 (2015). PubMed
Steketee M. B., Moysidis S. N., Jin X., Weinstein J. E., Pita-thomas W., Raju H. B., Iqbal S., Goldberg J. L., Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. U.S.A. 108, 19042–19047 (2011). PubMed PMC
Dhillon K., Aizel K., Broomhall T. J., Secret E., Goodman T., Rotherham M., Telling N., Siaugue J. M., Ménager C., Fresnais J., Coppey M., El Haj A. J., Gates M. A., Directional control of neurite outgrowth: Emerging technologies for Parkinson’s disease using magnetic nanoparticles and magnetic field gradients. J. R. Soc. Interface 19, 20220576 (2022). PubMed PMC
Alzahofi N., Welz T., Robinson C. L., Page E. L., Briggs D. A., Stainthorp A. K., Reekes J., Elbe D. A., Straub F., Kallemeijn W. W., Tate E. W., Goff P. S., Sviderskaya E. V., Cantero M., Montoliu L., Nedelec F., Miles A. K., Bailly M., Kerkhoff E., Hume A. N., Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins. Nat. Commun. 11, 3495 (2020). PubMed PMC
Phuyal S., Romani P., Dupont S., Farhan H., Mechanobiology of organelles: Illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol. 33, 1049–1061 (2023). PubMed
Dehapiot B., Clément R., Alégot H., Gazsó-Gerhát G., Philippe J. M., Lecuit T., Assembly of a persistent apical actin network by the formin Frl/Fmnl tunes epithelial cell deformability. Nat. Cell Biol. 22, 791–802 (2020). PubMed
Ossipova O., Kim K., Lake B. B., Itoh K., Ioannou A., Sokol S. Y., Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure. Nat. Commun. 5, 3734 (2014). PubMed PMC
Willoughby P. M., Allen M., Yu J., Korytnikov R., Chen T., Liu Y., So I., Macpherson N., Mitchell J. A., Fernandez-Gonzalez R., Bruce A. E. E., The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. eLife 10, e66060 (2021). PubMed PMC
Kühn S., Erdmann C., Kage F., Block J., Schwenkmezger L., Steffen A., Rottner K., Geyer M., The structure of FMNL2–Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat. Commun. 6, 7088 (2015). PubMed PMC
Zaoui K., Honoré S., Isnardon D., Braguer D., Badache A., Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells. J. Cell Biol. 183, 401–408 (2008). PubMed PMC
Sönnichsen B., De Renzis S., Nielsen E., Rietdorf J., Zerial M., Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000). PubMed PMC
Padilla-Rodriguez M., Parker S., Adams D., Westerling T., Puleo J., Watson A., Hill S., Noon M., Gaudin R., Aaron J., Tong D., Roe D., Knudsen B., Mouneimne G., The actin cytoskeletal architecture of estrogen receptor positive breast cancer cells suppresses invasion. Nat. Commun. 9, 2980 (2018). PubMed PMC
Kowarz E., Löscher D., Marschalek R., Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015). PubMed
Kawano F., Suzuki H., Furuya A., Sato M., Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015). PubMed
Miller E. W., Blystone S. D., The carboxy-terminus of the formin FMNL1ɣ bundles actin to potentiate adenocarcinoma migration. J. Cell. Biochem. 120, 14383–14404 (2019). PubMed
H. Li, K. A. Beckman, V. Pessino, B. Huang, J. S. Weissman, M. D. Leonetti, Design and specificity of long ssDNA donors for CRISPR-based knock-in. bioRxiv 178905 [Preprint] (2017). 10.1101/178905. DOI
Bennett H., Aguilar-Martinez E., Adamson A. D., CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Methods 191, 3–14 (2021). PubMed
Miller M. R., Miller E. W., Blystone S. D., Non-canonical activity of the podosomal formin FMNL1γ supports immune cell migration. J. Cell Sci. 130, 1730–1739 (2017). PubMed PMC
Cukierman E., Pankov R., Stevens D., Yamada K., Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001). PubMed
Piccinini F., Kiss A., Horvath P., CellTracker (not only) for dummies. Bioinformatics 32, 955–957 (2016). PubMed
Tseng Q., Duchemin-Pelletier E., Deshiere A., Balland M., Guilloud H., Filhol O., Theŕy M., Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc. Natl. Acad. Sci. U.S.A. 109, 1506–1511 (2012). PubMed PMC
Jakobs M. A., Dimitracopoulos A., Franze K., Kymobutler, a deep learning software for automated kymograph analysis. eLife 8, e42288 (2019). PubMed PMC
Belevich I., Joensuu M., Kumar D., Vihinen H., Jokitalo E., Microscopy image browser: A platform for segmentation and analysis of multidimensional datasets. PLOS Biol. 14, e1002340 (2016). PubMed PMC
Nørholm M. H. H., A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10, 21 (2010). PubMed PMC
Gross L. A., Baird G. S., Hoffman R. C., Baldridge K. K., Tsien R. Y., The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. U.S.A. 97, 11990–11995 (2000). PubMed PMC