Stress-mediated growth determines Escherichia coli division site morphogenesis

. 2025 Jul 15 ; 122 (28) : e2424441122. [epub] 20250709

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40632565

Grantová podpora
R35 GM142553 NIGMS NIH HHS - United States
UNCE/24/SCI/005 Grantová Agentura, Univerzita Karlova (GA UK)
R35GM142553 HHS | National Institutes of Health (NIH)
PRIMUS/20/SCI/015 Grantová Agentura, Univerzita Karlova (GA UK)
TMSGI3 218251 Swiss National Science Foundation (SNSF)

In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan synthases and hydrolases around the constricting Z-ring. We introduce a morphoelastic model that correctly reproduces the shape of the division site during the constriction and septation phases of Escherichia coli. In the model, mechanical stress directs the transformation of the bacterial wall. The two constants associated with growth and remodeling respectively are its only adjustable parameters. Different morphologies, corresponding either to mutant or wild type cells, are recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell plasmolysis data.

Před aktualizací

PubMed

Zobrazit více v PubMed

Lock R. L., Harry E. J., Cell-division inhibitors: New insights for future antibiotics. Nat. Rev. Drug Discov. 7, 324–338 (2008). PubMed

Bisson-Filho A. W., et al. , Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017). PubMed PMC

Cameron T. A., Margolin W., Insights into the assembly and regulation of the bacterial divisome. Nat. Rev. Microbiol. 22, 33–45 (2024). PubMed PMC

Egan A. J. F., Errington J., Vollmer W., Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020). PubMed

McQuillen R., Xiao J., Insights into the structure, function, and dynamics of the bacterial cytokinetic FtsZ-ring. Annu. Rev. Biophys. 49, 309–341 (2020). PubMed PMC

Rohs P. D. A., Bernhardt T. G., Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 315–336 (2021). PubMed

Navarro P. P., et al. , Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in PubMed PMC

Lan G., Wolgemuth C. W., Sun S. X., Z-ring force and cell shape during division in rod-like bacteria. Proc. Natl. Acad. Sci. U.S.A. 104, 316110–16115 (2007). PubMed PMC

Nguyen L. T., et al. , Simulations suggest a constrictive force is required for Gram-negative bacterial cell division. Nat. Commun. 10, 1259 (2019). PubMed PMC

Hsin J., Gopinathan A., Huang K. C., Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 109, 9432–9437 (2012). PubMed PMC

Amir A., Babaeipour F., McIntosh D. B., Nelson D. R., Jun S., Bending forces plastically deform growing bacterial cell walls. Proc. Natl. Acad. Sci. U.S.A. 111, 5778–5783 (2014). PubMed PMC

Julien J. D., Boudaoud A., Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. Cell Surf. 1, 34–42 (2018). PubMed PMC

Humphrey J. D., Rajagopal K. R., A constrained mixture model for growth and remodeling of soft tissues. M3AS 12, 407–430 (2002). PubMed PMC

Goriely A., “The Kinematics of Growth” in Interdisciplinary Applied Mathematics, Antman S. S., Greengrad L., Holmes P. J., Eds. (Springer, New York, NY, 2017), pp. 345–373.

Rodriguez E. K., Hoger A., McCulloch A. D., Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994). PubMed

Turner R., Mesnage S., Hobbs J., Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9, 1263 (2018). PubMed PMC

Vollmer W., Höltje J. V., The architecture of the murein (peptidoglycan) in gram-negative bacteria: Vertical scaffold or horizontal layer(s)? J. Bacteriol. 186, 5978–5987 (2004). PubMed PMC

Matias V. R., Al-Amoudi A., Dubochet J., Beveridge T. J., Cryo-transmission electron microscopy of frozen-hydrated sections of PubMed PMC

Labischinski H., Goodell E. W., Goodell A., Hochberg M. L., Direct proof of a more-than-single-layered peptidoglycan architecture of PubMed PMC

Yao X., Jericho M., Pink D., Beveridge T., Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181, 6865–6875 (1999). PubMed PMC

Gumbart J. C., Beeby M., Jensen G. J., Roux B., Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLoS Comput. Biol. 10, 1–10 (2014). PubMed PMC

Buda R., et al. , Dynamics of PubMed PMC

Tuson H. H., et al. , Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol. Microbiol. 84, 874–891 (2012). PubMed PMC

Chen Y. Y., et al. , Surface rigidity change of PubMed

Koch P. M. F., A. L., Nephelometric determination of turgor pressure in growing gram-negative bacteria. J. Bacteriol. 169, 3654–3663 (1987). PubMed PMC

Holland D. P., Walsby A. E., Digital recordings of gas-vesicle collapse used to measure turgor pressure and cell-water relations of cyanobacterial cells. J. Microbiol. Methods 77, 214–224 (2009). PubMed

Arnoldi M., et al. , Bacterial turgor pressure can be measured by atomic force microscopy. Phys. Rev. E 62, 1034–1044 (2000). PubMed

Yao X., et al. , Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Colloids Surf. B: Biointerfaces 23, 213–230 (2002).

Scott Cayley D., Guttman H. J., Thomas Record M., Biophysical characterization of changes in amounts and activity of PubMed PMC

Deng Y., Sun M., Shaevitz J. W., Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158101 (2011). PubMed

Rojas E., Theriot J. A., Huang K. C., Response of PubMed PMC

Beveridge T. J., The bacterial surface: General considerations towards design and function. Can. J. Microbiol. 34, 363–372 (1988). PubMed

Eaton P., Fernandes J. C., Pereira E., Pintado M. E., Malcata F. X., Atomic force microscopy study of the antibacterial effects of chitosans on PubMed

Boulbitch A., Quinn B., Pink D., Elasticity of the rod-shaped gram-negative eubacteria. Phys. Rev. Lett. 85, 5246–5249 (2000). PubMed

Taguchi A., et al. , FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 4, 587–594 (2019). PubMed PMC

Xu X., et al. , Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Proc. Natl. Acad. Sci. U.S.A. 120, e2301897120 (2023). PubMed PMC

Lyu Z., Coltharp C., Yang X., Xiao J., Influence of FtsZ GTPase activity and concentration on nanoscale z-ring structure in vivo revealed by three-dimensional superresolution imaging. Biopolymers 105, 725–734 (2016). PubMed PMC

Erickson H. P., Anderson D. E., Osawa M., FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010). PubMed PMC

Vadillo-Rodríguez V., Dutcher J. R., Viscoelasticity of the bacterial cell envelope. Soft Matter 7, 4101–4110 (2011).

Bohrer C. H., Xiao J., Complex diffusion in bacteria. Adv. Exp. Med. Biol. 1267, 15–43 (2020). PubMed PMC

Giesekus H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 11, 69–109 (1982).

Uehara T., Parzych K. R., Dinh T., Bernhardt T. G., Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010). PubMed PMC

Weissenberg K., A continuum theory of rhelogical phenomena. Nature 159, 310–311 (1947). PubMed

Rojas E. R., et al. , The outer membrane is an essential load-bearing element in gram-negative bacteria. Nature 559, 617–621 (2018). PubMed PMC

Fivenson E. M., et al. , A role for the gram-negative outer membrane in bacterial shape determination. Proc. Natl. Acad. Sci. U.S.A. 120, e2301987120 (2023). PubMed PMC

Alnaes M. S., et al. , The FEniCS project version 1.5. Arch. Numer. Software 3, 1–15 (2015).

Geuzaine C., Remacle J. F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

Dubochet Jea, Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988). PubMed

Wagner F. R., Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041–2070 (2020). PubMed PMC

Mastronarde D. N., Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...