Stress-mediated growth determines Escherichia coli division site morphogenesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R35 GM142553
NIGMS NIH HHS - United States
UNCE/24/SCI/005
Grantová Agentura, Univerzita Karlova (GA UK)
R35GM142553
HHS | National Institutes of Health (NIH)
PRIMUS/20/SCI/015
Grantová Agentura, Univerzita Karlova (GA UK)
TMSGI3 218251
Swiss National Science Foundation (SNSF)
PubMed
40632565
PubMed Central
PMC12280896
DOI
10.1073/pnas.2424441122
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial division, morphoelasticity, peptidoglycan, stress-mediated growth, turgor pressure,
- MeSH
- biologické modely * MeSH
- buněčná stěna metabolismus MeSH
- buněčné dělení * fyziologie MeSH
- Escherichia coli * růst a vývoj cytologie fyziologie MeSH
- mechanický stres MeSH
- morfogeneze MeSH
- Publikační typ
- časopisecké články MeSH
In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan synthases and hydrolases around the constricting Z-ring. We introduce a morphoelastic model that correctly reproduces the shape of the division site during the constriction and septation phases of Escherichia coli. In the model, mechanical stress directs the transformation of the bacterial wall. The two constants associated with growth and remodeling respectively are its only adjustable parameters. Different morphologies, corresponding either to mutant or wild type cells, are recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell plasmolysis data.
Department of Genetics Blavatník Institute Harvard Medical School Boston MA 02115
Department of Molecular Biology Massachusetts General Hospital Boston MA 02114
Zobrazit více v PubMed
Lock R. L., Harry E. J., Cell-division inhibitors: New insights for future antibiotics. Nat. Rev. Drug Discov. 7, 324–338 (2008). PubMed
Bisson-Filho A. W., et al. , Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017). PubMed PMC
Cameron T. A., Margolin W., Insights into the assembly and regulation of the bacterial divisome. Nat. Rev. Microbiol. 22, 33–45 (2024). PubMed PMC
Egan A. J. F., Errington J., Vollmer W., Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020). PubMed
McQuillen R., Xiao J., Insights into the structure, function, and dynamics of the bacterial cytokinetic FtsZ-ring. Annu. Rev. Biophys. 49, 309–341 (2020). PubMed PMC
Rohs P. D. A., Bernhardt T. G., Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 315–336 (2021). PubMed
Navarro P. P., et al. , Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in PubMed PMC
Lan G., Wolgemuth C. W., Sun S. X., Z-ring force and cell shape during division in rod-like bacteria. Proc. Natl. Acad. Sci. U.S.A. 104, 316110–16115 (2007). PubMed PMC
Nguyen L. T., et al. , Simulations suggest a constrictive force is required for Gram-negative bacterial cell division. Nat. Commun. 10, 1259 (2019). PubMed PMC
Hsin J., Gopinathan A., Huang K. C., Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 109, 9432–9437 (2012). PubMed PMC
Amir A., Babaeipour F., McIntosh D. B., Nelson D. R., Jun S., Bending forces plastically deform growing bacterial cell walls. Proc. Natl. Acad. Sci. U.S.A. 111, 5778–5783 (2014). PubMed PMC
Julien J. D., Boudaoud A., Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. Cell Surf. 1, 34–42 (2018). PubMed PMC
Humphrey J. D., Rajagopal K. R., A constrained mixture model for growth and remodeling of soft tissues. M3AS 12, 407–430 (2002). PubMed PMC
Goriely A., “The Kinematics of Growth” in Interdisciplinary Applied Mathematics, Antman S. S., Greengrad L., Holmes P. J., Eds. (Springer, New York, NY, 2017), pp. 345–373.
Rodriguez E. K., Hoger A., McCulloch A. D., Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994). PubMed
Turner R., Mesnage S., Hobbs J., Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9, 1263 (2018). PubMed PMC
Vollmer W., Höltje J. V., The architecture of the murein (peptidoglycan) in gram-negative bacteria: Vertical scaffold or horizontal layer(s)? J. Bacteriol. 186, 5978–5987 (2004). PubMed PMC
Matias V. R., Al-Amoudi A., Dubochet J., Beveridge T. J., Cryo-transmission electron microscopy of frozen-hydrated sections of PubMed PMC
Labischinski H., Goodell E. W., Goodell A., Hochberg M. L., Direct proof of a more-than-single-layered peptidoglycan architecture of PubMed PMC
Yao X., Jericho M., Pink D., Beveridge T., Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181, 6865–6875 (1999). PubMed PMC
Gumbart J. C., Beeby M., Jensen G. J., Roux B., Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLoS Comput. Biol. 10, 1–10 (2014). PubMed PMC
Buda R., et al. , Dynamics of PubMed PMC
Tuson H. H., et al. , Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol. Microbiol. 84, 874–891 (2012). PubMed PMC
Chen Y. Y., et al. , Surface rigidity change of PubMed
Koch P. M. F., A. L., Nephelometric determination of turgor pressure in growing gram-negative bacteria. J. Bacteriol. 169, 3654–3663 (1987). PubMed PMC
Holland D. P., Walsby A. E., Digital recordings of gas-vesicle collapse used to measure turgor pressure and cell-water relations of cyanobacterial cells. J. Microbiol. Methods 77, 214–224 (2009). PubMed
Arnoldi M., et al. , Bacterial turgor pressure can be measured by atomic force microscopy. Phys. Rev. E 62, 1034–1044 (2000). PubMed
Yao X., et al. , Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Colloids Surf. B: Biointerfaces 23, 213–230 (2002).
Scott Cayley D., Guttman H. J., Thomas Record M., Biophysical characterization of changes in amounts and activity of PubMed PMC
Deng Y., Sun M., Shaevitz J. W., Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158101 (2011). PubMed
Rojas E., Theriot J. A., Huang K. C., Response of PubMed PMC
Beveridge T. J., The bacterial surface: General considerations towards design and function. Can. J. Microbiol. 34, 363–372 (1988). PubMed
Eaton P., Fernandes J. C., Pereira E., Pintado M. E., Malcata F. X., Atomic force microscopy study of the antibacterial effects of chitosans on PubMed
Boulbitch A., Quinn B., Pink D., Elasticity of the rod-shaped gram-negative eubacteria. Phys. Rev. Lett. 85, 5246–5249 (2000). PubMed
Taguchi A., et al. , FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 4, 587–594 (2019). PubMed PMC
Xu X., et al. , Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Proc. Natl. Acad. Sci. U.S.A. 120, e2301897120 (2023). PubMed PMC
Lyu Z., Coltharp C., Yang X., Xiao J., Influence of FtsZ GTPase activity and concentration on nanoscale z-ring structure in vivo revealed by three-dimensional superresolution imaging. Biopolymers 105, 725–734 (2016). PubMed PMC
Erickson H. P., Anderson D. E., Osawa M., FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010). PubMed PMC
Vadillo-Rodríguez V., Dutcher J. R., Viscoelasticity of the bacterial cell envelope. Soft Matter 7, 4101–4110 (2011).
Bohrer C. H., Xiao J., Complex diffusion in bacteria. Adv. Exp. Med. Biol. 1267, 15–43 (2020). PubMed PMC
Giesekus H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 11, 69–109 (1982).
Uehara T., Parzych K. R., Dinh T., Bernhardt T. G., Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010). PubMed PMC
Weissenberg K., A continuum theory of rhelogical phenomena. Nature 159, 310–311 (1947). PubMed
Rojas E. R., et al. , The outer membrane is an essential load-bearing element in gram-negative bacteria. Nature 559, 617–621 (2018). PubMed PMC
Fivenson E. M., et al. , A role for the gram-negative outer membrane in bacterial shape determination. Proc. Natl. Acad. Sci. U.S.A. 120, e2301987120 (2023). PubMed PMC
Alnaes M. S., et al. , The FEniCS project version 1.5. Arch. Numer. Software 3, 1–15 (2015).
Geuzaine C., Remacle J. F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).
Dubochet Jea, Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988). PubMed
Wagner F. R., Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041–2070 (2020). PubMed PMC
Mastronarde D. N., Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed