IxsS7: A novel biomarker for Ixodes scapularis tick bite exposure in humans

. 2025 Jul ; 16 (4) : 102514. [epub] 20250709

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40639194

Grantová podpora
Z99 AI999999 Intramural NIH HHS - United States
ZIA AI001337 Intramural NIH HHS - United States

Odkazy

PubMed 40639194
PubMed Central PMC12321155
DOI 10.1016/j.ttbdis.2025.102514
PII: S1877-959X(25)00078-0
Knihovny.cz E-zdroje

Ixodes scapularis is a primary vector of several important tick-borne pathogens including Borrelia burgdorferi sensu lato, the causative bacterial genospecies complex of Lyme disease, Babesia microti, Anaplasma phagocytophilum, Borrelia miyamotoi, Ehrlichia muris eauclarensis, and Powassan virus. Salivary compounds secreted by I. scapularis during blood feeding are immunogenic and can elicit robust antibody responses in humans which can potentially be leveraged as surrogate markers of prior tick bite exposure. In this study, we investigate the potential of a tick secreted salivary serine protease inhibitor, IxsS7, as a novel antigenic biomarker of I. scapularis exposure in humans. We demonstrate that the IxsS7 protein-coding sequence is highly conserved (>90 % identity) among other important Ixodes species (e.g., Ixodes ricinus, Ixodes persulcatus, and Ixodes pacificus) and poorly conserved (<50 % identity) with homologs from other tick genera, such as Amblyomma spp., Dermacentor spp., Rhipicephalus spp., and Haemaphysalis spp. Antibodies in sera from rabbits immunized with recombinant IxsS7 (rIxsS7) strongly recognize native IxsS7 when challenged with salivary gland homogenate (SGH) from blood-fed I. scapularis females, while showing minimal cross-reactivity with SGH from other hard tick (Ixodidae) genera. Western blot and ELISA analyses revealed that human subjects who reported recent prior exposure to ticks possessed IgG antibodies that recognized rIxsS7, highlighting its potential as a biomarker of exposure specifically against I. scapularis. Further development of serological tools that can measure human antibody responses to Ixodes-specific salivary antigens is essential to better quantify individual- and population-level risk of important tick-borne diseases such as Lyme disease.

Global Vaccines Medical Affairs Pfizer Research and Development Cambridge MS USA

Global Vaccines Medical Affairs Pfizer Research and Development NY NY USA

Global Vaccines Medical Affairs Pfizer Research and Development NY NY USA; Tick Pathogen Transmission Unit Laboratory of Bacteriology Rocky Mountain Laboratories Division of Intramural Research National Institute of Allergy and Infectious Diseases Hamilton MT USA

Global Vaccines Medical Affairs Pfizer Research and Development NY NY USA; Vector Molecular Biology Section Laboratory of Malaria and Vector Research Division of Intramural Research National Institute of Allergy and Infectious Diseases Rockville MD USA

Johns Hopkins University Baltimore MD USA

Lyme Disease Studies Unit Laboratory of Clinical Immunology and Microbiology Division of Intramural Research National Institute of Allergy and Infectious Diseases Bethesda MD USA

Tick Pathogen Transmission Unit Laboratory of Bacteriology Rocky Mountain Laboratories Division of Intramural Research National Institute of Allergy and Infectious Diseases Hamilton MT USA

Tick Pathogen Transmission Unit Laboratory of Bacteriology Rocky Mountain Laboratories Division of Intramural Research National Institute of Allergy and Infectious Diseases Hamilton MT USA; Centro de Pesquisa Experimental Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil

Tick Pathogen Transmission Unit Laboratory of Bacteriology Rocky Mountain Laboratories Division of Intramural Research National Institute of Allergy and Infectious Diseases Hamilton MT USA; Department of Biochemistry and Molecular Biology University of Nevada Reno NV USA

Tick Pathogen Transmission Unit Laboratory of Bacteriology Rocky Mountain Laboratories Division of Intramural Research National Institute of Allergy and Infectious Diseases Hamilton MT USA; Department of Medical Biology Faculty of Science University of South Bohemia in České Budějovice Budweis Czech Republic

Vector Molecular Biology Section Laboratory of Malaria and Vector Research Division of Intramural Research National Institute of Allergy and Infectious Diseases Rockville MD USA

Zobrazit více v PubMed

Alarcon-Chaidez F, Ryan R, Wikel S, Dardick K, Lawler C, Foppa IM, Tomas P, Cushman A, Hsieh A, Spielman A, Bouchard KR, Dias F, Aslanzadeh J, Krause PJ, 2006. Confirmation of tick bite by detection of antibody to PubMed DOI PMC

Ali ZM, Bakli M, Fontaine A, Bakkali N, Vu Hai V, Audebert S, Boublik Y, Pages F, Remoue F, Rogier C, Fraisier C, Almeras L, 2012. Assessment of PubMed DOI PMC

Boorgula GDY, Peterson AT, Foley DH, Ganta RR, Raghavan RK, 2020. Assessing the current and future potential geographic distribution of the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) in North America. PLoS One 15, e0237191. 10.1371/journal.pone.0237191. PubMed DOI PMC

Bouchard C, Dibernardo A, Koffi J, Wood H, Leighton PA, Lindsay LR, 2019. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep 45, 83–89. 10.14745/ccdr.v45i04a02. PubMed DOI PMC

Burke G, Wikel SK, Spielman A, Telford SR, McKay K, Krause PJ, Tick-borne Infection Study Group, 2005. Hypersensitivity to ticks and Lyme disease risk. Emerg. Infect. Dis 11, 36–41. 10.3201/eid1101.040303. PubMed DOI PMC

Centers for Disease Control and Prevention, U.S., 2024. Geographic distribution of tickborne disease cases, 15 May 2024 ed.

Cerqueira de Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, Istace B, Kritli S, Cruaud C, Olaso R, Deleuze JF, Voordouw MJ, Hervet C, Plantard O, Zamoto-Niikura A, Chertemps T, Maibeche M, Hilliou F, Le Goff G, Chmelar J, Mazak V, Jmel MA, Kotsyfakis M, Medina JM, Hackenberg M, Simo L, Koutroumpa FA, Wincker P, Kopacek P, Perner J, Aury JM, Rispe C, 2025. Genome sequences of four PubMed DOI PMC

Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F, 2024. Antibodies to PubMed DOI PMC

Chlastakova A, Kotal J, Berankova Z, Kascakova B, Martins LA, Langhansova H, Prudnikova T, Ederova M, Kuta Smatanova I, Kotsyfakis M, Chmelar J, 2021. Iripin-3, a new salivary protein isolated from PubMed DOI PMC

Coutinho ML, Bizzarro B, Tirloni L, Berger M, Freire Oliveira CJ, Sa-Nunes A, Silva Vaz I Jr., 2020. PubMed DOI PMC

da Silva Vaz I Junior, Lu S, Pinto AFM, Diedrich JK, Yates JR 3rd, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L, 2024. Changes in saliva protein profile throughout PubMed DOI PMC

de Araujo FF, Abdeladhim M, Teixeira C, Hummer K, Wilkerson MD, Ressner R, Lakhal-Naouar I, Ellis MW, Meneses C, Nurmukhambetova S, Gomes R, Tolbert WD, Turiansky GW, Pazgier M, Oliveira F, Valenzuela JG, Kamhawi S, Aronson N, 2024. Immune response profiles from humans experimentally exposed to PubMed DOI PMC

Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG, 2023. Assessing the influence of climate change and environmental factors on the top tick-borne diseases in the United States: a systematic review. Microorganisms 12, 50. 10.3390/microorganisms12010050. PubMed DOI PMC

Diuk-Wasser MA, VanAcker MC, Fernandez MP, 2021. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol 58, 1546–1564. 10.1093/jme/tjaa209. PubMed DOI

Doucoure S, Mouchet F, Cornelie S, Drame PM, D'Ortenzio E, DeHecq JS, Remoue F, 2014. Human antibody response to PubMed DOI PMC

Dziedziech A, Krupa E, Persson KEM, Paul R, Bonnet S, 2024. Tick exposure biomarkers: a One Health approach to new tick surveillance tools. Curr. Res. Parasitol. Vector Borne Dis 6, 100212. 10.1016/j.crpvbd.2024.100212. PubMed DOI PMC

Eisen L, Eisen RJ, 2023. Changes in the geographic distribution of the blacklegged tick, PubMed DOI PMC

Eisen RJ, Eisen L, 2018. The blacklegged tick, PubMed DOI PMC

Eisen RJ, Paddock CD, 2021. Tick and tickborne pathogen surveillance as a public health tool in the United States. J. Med. Entomol 58, 1490–1502. 10.1093/jme/tjaa087. PubMed DOI PMC

Fowler PD, Nguyentran S, Quatroche L, Porter ML, Kobbekaduwa V, Tippin S, Miller G, Dinh E, Foster E, Tsao JI, 2022. Northward expansion of Amblyomma americanum (Acari: Ixodidae) into southwestern Michigan. J. Med. Entomol 59, 1646–1659. 10.1093/jme/tjac082. PubMed DOI PMC

Goldstein MD, Schwartz BS, Friedmann C, Maccarillo B, Borbi M, Tuccillo R, 1990. Lyme disease in New Jersey outdoor workers: a statewide survey of seroprevalence and tick exposure. Am. J. Public Health 80, 1225–1229. PubMed PMC

Grant AN, Lineberry MW, Sundstrom KD, Allen KE, Little SE, 2023. Geographic distribution and seasonality of brown dog tick lineages in the United States. J. Med. Entomol 60, 102–111. 10.1093/jme/tjac172. PubMed DOI PMC

Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pages F, 2014. Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick Borne Dis. 5, 607–619. 10.1016/j.ttbdis.2014.07.022. PubMed DOI

Iniguez E, Saha S, Petrellis G, Menenses C, Herbert S, Gonzalez-Rangel Y, Rowland T, Aronson NE, Rose C, Rafuse Haines L, Acosta-Serrano A, Serafim TD, Oliveira F, Srikantiah S, Bern C, Valenzuela JG, Kamhawi S, 2022. A composite recombinant salivary proteins biomarker for PubMed DOI PMC

Jaworski DC, Muller MT, Simmen FA, Needham GR, 1990. PubMed DOI

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS, 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. 10.1038/nmeth.4285. PubMed DOI PMC

Katoh K, Rozewicki J, Yamada KD, 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform 20, 1160–1166. 10.1093/bib/bbx108. PubMed DOI PMC

Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR 3rd, Mulenga A, 2021. PubMed DOI PMC

Kim TK, Tirloni L, Pinto AF, Moresco J, Yates JR 3rd, da Silva Vaz I Jr., Mulenga A, 2016. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl. Trop. Dis 10, e0004323. 10.1371/journal.pntd.0004323. PubMed DOI PMC

Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR 3rd, da Silva Vaz I Jr., Mulenga A, 2020. Time-resolved proteomic profile of PubMed DOI PMC

Koci J, Simo L, Park Y, 2013. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol 50, 79–84. 10.1603/me12034. PubMed DOI PMC

Kopsco HL, Gronemeyer P, Mateus-Pinilla N, Smith RL, 2023. Current and future habitat suitability models for four ticks of medical concern in Illinois, USA. Insects 14, 213. 10.3390/insects14030213. PubMed DOI PMC

Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF, 2021. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis 27, 616–619. 10.3201/eid2702.202731. PubMed DOI PMC

Lane RS, Moss RB, Hsu YP, Wei T, Mesirow ML, Kuo MM, 1999. Anti-arthropod saliva antibodies among residents of a community at high risk for Lyme disease in California. Am. J. Trop. Med. Hyg 61, 850–859. 10.4269/ajtmh.1999.61.850. PubMed DOI

Letunic I, Bork P, 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82. 10.1093/nar/gkae268. PubMed DOI PMC

Lewis LA, Radulovic ZM, Kim TK, Porter LM, Mulenga A, 2015. Identification of 24 h PubMed DOI PMC

Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI

Lu S, Martins LA, Kotal J, Ribeiro JMC, Tirloni L, 2023. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female PubMed DOI PMC

Machtinger ET, Nadolny RM, Vinyard BT, Eisen L, Hojgaard A, Haynes SA, Bowman L, Casal C, Li AY, 2021. Spatial heterogeneity of sympatric tick species and tick-borne pathogens emphasizes the need for surveillance for effective tick control. Vector Borne Zoonotic Dis. 21, 843–853. 10.1089/vbz.2021.0027. PubMed DOI PMC

Malouin R, Winch P, Leontsini E, Glass G, Simon D, Hayes EB, Schwartz BS, 2003. Longitudinal evaluation of an educational intervention for preventing tick bites in an area with endemic Lyme disease in Baltimore County, Maryland. Am. J. Epidemiol 157, 1039–1051. 10.1093/aje/kwg076. PubMed DOI

Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ, 2020. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet 395, 1998–2007. 10.1016/S0140-6736(20)31048-5. PubMed DOI PMC

Marques A, Okpali G, Liepshutz K, Ortega-Villa AM, 2022. Characteristics and outcome of facial nerve palsy from Lyme neuroborreliosis in the United States. Ann. Clin. Transl. Neurol 9, 41–49. 10.1002/acn3.51488. PubMed DOI PMC

Marques A, Telford SR 3rd, Turk SP, Chung E, Williams C, Dardick K, Krause PJ, Brandeburg C, Crowder CD, Carolan HE, Eshoo MW, Shaw PA, Hu LT, 2014a. Xenodiagnosis to detect PubMed DOI PMC

Marques A, Telford SR 3rd, Turk SP, Chung E, Williams C, Dardick K, Krause PJ, Brandeburg C, Crowder CD, Carolan HE, Eshoo MW, Shaw PA, Hu LT, 2014b. Xenodiagnosis to detect PubMed DOI PMC

Marques AR, Strle F, Wormser GP, 2021. Comparison of Lyme disease in the United States and Europe. Emerg. Infect. Dis 27, 2017–2024. 10.3201/eid2708.204763. PubMed DOI PMC

Mathieu-Daude F, Claverie A, Plichart C, Boulanger D, Mphande FA, Bossin HC, 2018. Specific human antibody responses to PubMed DOI PMC

McNally KL, Mitzel DN, Anderson JM, Ribeiro JM, Valenzuela JG, Myers TG, Godinez A, Wolfinbarger JB, Best SM, Bloom ME, 2012. Differential salivary gland transcript expression profile in PubMed DOI PMC

Mihaljica D, Markovic D, Radulovic Z, Mulenga A, Cakic S, Sukara R, Milanovic Z, Tomanovic S, 2017a. Assessment of using recombinant PubMed DOI

Mihaljica D, Markovic D, Radulovic Z, Mulenga A, Cakic S, Sukara R, Samardzic J, Tomanovic S, 2017b. PubMed DOI

Mihaljica D, Markovic D, Repac J, Bozic B, Radulovic Z, Veinovic G, Sukara R, Ristanovic E, Chochlakis D, Nedeljkovic BB, Tomanovic S, 2021. Exploring immunogenicity of tick salivary AV422 protein in persons exposed to ticks: prospects for utilization. Exp. Appl. Acarol 85, 83–99. 10.1007/s10493-021-00653-z. PubMed DOI

Minh BQ, Dang CC, Vinh LS, Lanfear R, 2021. QMaker: fast and accurate method to estimate empirical models of protein evolution. Syst. Biol 70, 1046–1060. 10.1093/sysbio/syab010. PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R, 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol 37, 1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC

Molaei G, Eisen LM, Price KJ, Eisen RJ, 2022. Range expansion of native and invasive ticks: a looming public health threat. J. Infect. Dis 226, 370–373. 10.1093/infdis/jiac249. PubMed DOI PMC

Mulenga A, Khumthong R, Chalaire KC, 2009. PubMed DOI PMC

Nadelman RB, Nowakowski J, Forseter G, Goldberg NS, Bittker S, Cooper D, Aguero-Rosenfeld M, Wormser GP, 1996. The clinical spectrum of early Lyme borreliosis in patients with culture-confirmed erythema migrans. Am. J. Med 100, 502–508. 10.1016/s0002-9343(95)99915-9. PubMed DOI

Nelder MP, Russell CB, Johnson S, Li Y, Cronin K, Cawston T, Patel SN, 2022. American dog ticks along their expanding range edge in Ontario, Canada. Sci. Rep 12, 11063. 10.1038/s41598-022-15009-9. PubMed DOI PMC

Ng YQ, Gupte TP, Krause PJ, 2021. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol. 43, e12819. 10.1111/pim.12819. PubMed DOI

Nguyen TT, Kim TH, Bencosme-Cuevas E, Berry J, Gaithuma ASK, Ansari MA, Kim TK, Tirloni L, Radulovic Z, Moresco JJ, Yates JR 3rd, Mulenga A, 2024. A tick saliva serpin, IxsS17 inhibits host innate immune system proteases and enhances host colonization by Lyme disease agent. PLoS Pathog. 20, e1012032. 10.1371/journal.ppat.1012032. PubMed DOI PMC

Nicholas K., 2000. GeneDoc: multiple sequence alignment editor. Available from: https://github.com/karlnicholas/GeneDoc (accessed 24 August 2024).

Nigrovic LE, Neville DN, Balamuth F, Bennett JE, Levas MN, Garro AC, for Pedi Lyme N, 2019. A minority of children diagnosed with Lyme disease recall a preceding tick bite. Ticks Tick Borne Dis. 10, 694–696. 10.1016/j.ttbdis.2019.02.015. PubMed DOI

Ogden NH, Bouchard C, Badcock J, Drebot MA, Elias SP, Hatchette TF, Koffi JK, Leighton PA, Lindsay LR, Lubelczyk CB, Peregrine AS, Smith RP, Webster D, 2019. What is the real number of Lyme disease cases in Canada? BMC Public Health 19, 849. 10.1186/s12889-019-7219-x. PubMed DOI PMC

Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, Fischer L, Ward J, Valenzuela JG, 2006. From transcriptome to immunome: identification of DTH inducing proteins from a PubMed DOI

Parmar A, Grewal AS, & Dhillon P, 1996. Immunological cross-reactivity between salivary gland proteins of PubMed DOI

Piyasiri SB, Senanayake S, Samaranayake N, Doh S, Iniguez E, Kamhawi S, & Karunaweera ND, 2024. rPagSP02+rPagSP06 recombinant salivary antigen is a reliable biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. Research Square. 10.21203/rs.3.rs-4633976/v1. PubMed DOI PMC

Porter L, Radulovic Z, Kim T, Braz GR, Da Silva Vaz I Jr., & Mulenga A, 2015. Bioinformatic analyses of male and female PubMed DOI PMC

Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, & Wikel SK, 2006. An annotated catalog of salivary gland transcripts from PubMed DOI

Ribeiro JM, Mans BJ, & Arca B, 2010. An insight into the sialome of blood-feeding Nematocera. Insect Biochem. Mol. Biol 40, 767–784. 10.1016/j.ibmb.2010.08.002. PubMed DOI PMC

Ribeiro JMC, & Mans BJ, 2020. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell. Infect. Microbiol 10, 374. 10.3389/fcimb.2020.00374. PubMed DOI PMC

Rochlin I, Benach JL, Furie MB, Thanassi DG, & Kim HK, 2023. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA. Ticks Tick Borne Dis. 14, 102088. 10.1016/j.ttbdis.2022.102088. PubMed DOI PMC

Sanders ML, Glass GE, Nadelman RB, Wormser GP, Scott AL, Raha S, Ritchie BC, Jaworski DC, & Schwartz BS, 1999. Antibody levels to recombinant tick calreticulin increase in humans after exposure to Ixodes scapularis (Say) and are correlated with tick engorgement indices. Am. J. Epidemiol 149, 777–784. 10.1093/oxfordjournals.aje.a009887. PubMed DOI

Sanders ML, Jaworski DC, Sanchez JL, DeFraites RF, Glass GE, Scott AL, Raha S, Ritchie BC, Needham GR, & Schwartz BS, 1998. Antibody to a cDNA-derived calreticulin protein from PubMed DOI

Sanders ML, Scott AL, Glass GE, & Schwartz BS, 1996. Salivary gland changes and host antibody responses associated with feeding of male lone star ticks (Acari: Ixodidae). J. Med. Entomol 33, 628–634. 10.1093/jmedent/33.4.628. PubMed DOI

Schwartz BS, Ford DP, Childs JE, Rothman N, Thomas RJ, 1991. Anti-tick saliva antibody: a biologic marker of tick exposure that is a risk factor for Lyme disease seropositivity. Am. J. Epidemiol 134, 86–95. 10.1093/oxfordjournals.aje.a115996. PubMed DOI

Schwartz BS, Goldstein MD, 1990. Lyme disease in outdoor workers: risk factors, preventive measures, and tick removal methods. Am. J. Epidemiol 131, 877–885. 10.1093/oxfordjournals.aje.a115578. PubMed DOI

Schwartz BS, Goldstein MD, Childs JE, 1993. Antibodies to PubMed DOI PMC

Schwartz BS, Goldstein MD, Childs JE, 1994. Longitudinal study of PubMed DOI

Schwartz BS, Ribeiro JM, Goldstein MD, 1990. Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am. J. Epidemiol 132, 58–66. 10.1093/oxfordjournals.aje.a115643. PubMed DOI

Schwartz BS, Sanchez JL, Sanders ML, DeFraites RF, 1996. Tick avoidance behaviors associated with a decreased risk of anti-tick salivary gland protein antibody seropositivity in military personnel exposed to PubMed DOI

Shapiro SZ, Voigt WP, Fujisaki K, 1986. Tick antigens recognized by serum from a guinea pig resistant to infestation with the tick PubMed DOI

Sonenshine DE, 2018. Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health 15. 10.3390/ijerph15030478. PubMed DOI PMC

Tardy O, Acheson ES, Bouchard C, Chamberland E, Fortin A, Ogden NH, Leighton PA, 2023. Mechanistic movement models to predict geographic range expansions of ticks and tick-borne pathogens: case studies with PubMed DOI

Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H, 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol 40, 1023–1025. 10.1038/s41587-021-01156-3. PubMed DOI PMC

Thompson JD, Higgins DG, Gibson TJ, 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. 10.1093/nar/22.22.4673. PubMed DOI PMC

Tirloni L, Kim TK, Coutinho ML, Ali A, Seixas A, Termignoni C, Mulenga A, da Silva Vaz I Jr., 2016. The putative role of PubMed DOI PMC

Tirloni L, Kim TK, Pinto AFM, Yates JR 3rd, da Silva Vaz I Jr., Mulenga A, 2017. Tick-host range adaptation: changes in protein profiles in unfed adult PubMed DOI PMC

Tirloni L, Lu S, Calvo E, Sabadin G, Di Maggio LS, Suzuki M, Nardone G, da Silva Vaz I Jr., Ribeiro JMC, 2020. Integrated analysis of sialotranscriptome and sialoproteome of the brown dog tick Rhipicephalus sanguineus (s.l.): insights into gene expression during blood feeding. J. Proteomics 229, 103899. 10.1016/j.jprot.2020.103899. PubMed DOI PMC

Valenzuela JG, 2004. Exploring tick saliva: from biochemistry to 'sialomes' and functional genomics. Parasitology 129 Suppl, S83–94. 10.1017/s0031182004005189 PubMed DOI

Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM, 2002. Exploring the sialome of the tick PubMed DOI

Zhang X, Zhang B, Masoudi A, Wang X, Xue X, Li M, Xiao Q, Wang M, Liu J, Wang H, 2020. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick ( PubMed DOI

Zheng W, Hu H, Jiang J, Sun X, Fu R, Tao H, Liu Y, Chen H, Ma H, Chen S, 2022. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...