IxsS7: A novel biomarker for Ixodes scapularis tick bite exposure in humans
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Z99 AI999999
Intramural NIH HHS - United States
ZIA AI001337
Intramural NIH HHS - United States
PubMed
40639194
PubMed Central
PMC12321155
DOI
10.1016/j.ttbdis.2025.102514
PII: S1877-959X(25)00078-0
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia, Ixodes, Ixodid, Lyme, Tick, Tick saliva, Vaccine,
- MeSH
- biologické markery krev MeSH
- klíště * genetika MeSH
- kousnutí klíštětem * diagnóza MeSH
- lidé MeSH
- proteiny členovců * genetika imunologie MeSH
- slinné proteiny a peptidy * genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- proteiny členovců * MeSH
- slinné proteiny a peptidy * MeSH
Ixodes scapularis is a primary vector of several important tick-borne pathogens including Borrelia burgdorferi sensu lato, the causative bacterial genospecies complex of Lyme disease, Babesia microti, Anaplasma phagocytophilum, Borrelia miyamotoi, Ehrlichia muris eauclarensis, and Powassan virus. Salivary compounds secreted by I. scapularis during blood feeding are immunogenic and can elicit robust antibody responses in humans which can potentially be leveraged as surrogate markers of prior tick bite exposure. In this study, we investigate the potential of a tick secreted salivary serine protease inhibitor, IxsS7, as a novel antigenic biomarker of I. scapularis exposure in humans. We demonstrate that the IxsS7 protein-coding sequence is highly conserved (>90 % identity) among other important Ixodes species (e.g., Ixodes ricinus, Ixodes persulcatus, and Ixodes pacificus) and poorly conserved (<50 % identity) with homologs from other tick genera, such as Amblyomma spp., Dermacentor spp., Rhipicephalus spp., and Haemaphysalis spp. Antibodies in sera from rabbits immunized with recombinant IxsS7 (rIxsS7) strongly recognize native IxsS7 when challenged with salivary gland homogenate (SGH) from blood-fed I. scapularis females, while showing minimal cross-reactivity with SGH from other hard tick (Ixodidae) genera. Western blot and ELISA analyses revealed that human subjects who reported recent prior exposure to ticks possessed IgG antibodies that recognized rIxsS7, highlighting its potential as a biomarker of exposure specifically against I. scapularis. Further development of serological tools that can measure human antibody responses to Ixodes-specific salivary antigens is essential to better quantify individual- and population-level risk of important tick-borne diseases such as Lyme disease.
Global Vaccines Medical Affairs Pfizer Research and Development Cambridge MS USA
Global Vaccines Medical Affairs Pfizer Research and Development NY NY USA
Zobrazit více v PubMed
Alarcon-Chaidez F, Ryan R, Wikel S, Dardick K, Lawler C, Foppa IM, Tomas P, Cushman A, Hsieh A, Spielman A, Bouchard KR, Dias F, Aslanzadeh J, Krause PJ, 2006. Confirmation of tick bite by detection of antibody to PubMed DOI PMC
Ali ZM, Bakli M, Fontaine A, Bakkali N, Vu Hai V, Audebert S, Boublik Y, Pages F, Remoue F, Rogier C, Fraisier C, Almeras L, 2012. Assessment of PubMed DOI PMC
Boorgula GDY, Peterson AT, Foley DH, Ganta RR, Raghavan RK, 2020. Assessing the current and future potential geographic distribution of the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) in North America. PLoS One 15, e0237191. 10.1371/journal.pone.0237191. PubMed DOI PMC
Bouchard C, Dibernardo A, Koffi J, Wood H, Leighton PA, Lindsay LR, 2019. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep 45, 83–89. 10.14745/ccdr.v45i04a02. PubMed DOI PMC
Burke G, Wikel SK, Spielman A, Telford SR, McKay K, Krause PJ, Tick-borne Infection Study Group, 2005. Hypersensitivity to ticks and Lyme disease risk. Emerg. Infect. Dis 11, 36–41. 10.3201/eid1101.040303. PubMed DOI PMC
Centers for Disease Control and Prevention, U.S., 2024. Geographic distribution of tickborne disease cases, 15 May 2024 ed.
Cerqueira de Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, Istace B, Kritli S, Cruaud C, Olaso R, Deleuze JF, Voordouw MJ, Hervet C, Plantard O, Zamoto-Niikura A, Chertemps T, Maibeche M, Hilliou F, Le Goff G, Chmelar J, Mazak V, Jmel MA, Kotsyfakis M, Medina JM, Hackenberg M, Simo L, Koutroumpa FA, Wincker P, Kopacek P, Perner J, Aury JM, Rispe C, 2025. Genome sequences of four PubMed DOI PMC
Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F, 2024. Antibodies to PubMed DOI PMC
Chlastakova A, Kotal J, Berankova Z, Kascakova B, Martins LA, Langhansova H, Prudnikova T, Ederova M, Kuta Smatanova I, Kotsyfakis M, Chmelar J, 2021. Iripin-3, a new salivary protein isolated from PubMed DOI PMC
Coutinho ML, Bizzarro B, Tirloni L, Berger M, Freire Oliveira CJ, Sa-Nunes A, Silva Vaz I Jr., 2020. PubMed DOI PMC
da Silva Vaz I Junior, Lu S, Pinto AFM, Diedrich JK, Yates JR 3rd, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L, 2024. Changes in saliva protein profile throughout PubMed DOI PMC
de Araujo FF, Abdeladhim M, Teixeira C, Hummer K, Wilkerson MD, Ressner R, Lakhal-Naouar I, Ellis MW, Meneses C, Nurmukhambetova S, Gomes R, Tolbert WD, Turiansky GW, Pazgier M, Oliveira F, Valenzuela JG, Kamhawi S, Aronson N, 2024. Immune response profiles from humans experimentally exposed to PubMed DOI PMC
Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG, 2023. Assessing the influence of climate change and environmental factors on the top tick-borne diseases in the United States: a systematic review. Microorganisms 12, 50. 10.3390/microorganisms12010050. PubMed DOI PMC
Diuk-Wasser MA, VanAcker MC, Fernandez MP, 2021. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol 58, 1546–1564. 10.1093/jme/tjaa209. PubMed DOI
Doucoure S, Mouchet F, Cornelie S, Drame PM, D'Ortenzio E, DeHecq JS, Remoue F, 2014. Human antibody response to PubMed DOI PMC
Dziedziech A, Krupa E, Persson KEM, Paul R, Bonnet S, 2024. Tick exposure biomarkers: a One Health approach to new tick surveillance tools. Curr. Res. Parasitol. Vector Borne Dis 6, 100212. 10.1016/j.crpvbd.2024.100212. PubMed DOI PMC
Eisen L, Eisen RJ, 2023. Changes in the geographic distribution of the blacklegged tick, PubMed DOI PMC
Eisen RJ, Eisen L, 2018. The blacklegged tick, PubMed DOI PMC
Eisen RJ, Paddock CD, 2021. Tick and tickborne pathogen surveillance as a public health tool in the United States. J. Med. Entomol 58, 1490–1502. 10.1093/jme/tjaa087. PubMed DOI PMC
Fowler PD, Nguyentran S, Quatroche L, Porter ML, Kobbekaduwa V, Tippin S, Miller G, Dinh E, Foster E, Tsao JI, 2022. Northward expansion of Amblyomma americanum (Acari: Ixodidae) into southwestern Michigan. J. Med. Entomol 59, 1646–1659. 10.1093/jme/tjac082. PubMed DOI PMC
Goldstein MD, Schwartz BS, Friedmann C, Maccarillo B, Borbi M, Tuccillo R, 1990. Lyme disease in New Jersey outdoor workers: a statewide survey of seroprevalence and tick exposure. Am. J. Public Health 80, 1225–1229. PubMed PMC
Grant AN, Lineberry MW, Sundstrom KD, Allen KE, Little SE, 2023. Geographic distribution and seasonality of brown dog tick lineages in the United States. J. Med. Entomol 60, 102–111. 10.1093/jme/tjac172. PubMed DOI PMC
Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pages F, 2014. Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick Borne Dis. 5, 607–619. 10.1016/j.ttbdis.2014.07.022. PubMed DOI
Iniguez E, Saha S, Petrellis G, Menenses C, Herbert S, Gonzalez-Rangel Y, Rowland T, Aronson NE, Rose C, Rafuse Haines L, Acosta-Serrano A, Serafim TD, Oliveira F, Srikantiah S, Bern C, Valenzuela JG, Kamhawi S, 2022. A composite recombinant salivary proteins biomarker for PubMed DOI PMC
Jaworski DC, Muller MT, Simmen FA, Needham GR, 1990. PubMed DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS, 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. 10.1038/nmeth.4285. PubMed DOI PMC
Katoh K, Rozewicki J, Yamada KD, 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform 20, 1160–1166. 10.1093/bib/bbx108. PubMed DOI PMC
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR 3rd, Mulenga A, 2021. PubMed DOI PMC
Kim TK, Tirloni L, Pinto AF, Moresco J, Yates JR 3rd, da Silva Vaz I Jr., Mulenga A, 2016. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl. Trop. Dis 10, e0004323. 10.1371/journal.pntd.0004323. PubMed DOI PMC
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR 3rd, da Silva Vaz I Jr., Mulenga A, 2020. Time-resolved proteomic profile of PubMed DOI PMC
Koci J, Simo L, Park Y, 2013. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol 50, 79–84. 10.1603/me12034. PubMed DOI PMC
Kopsco HL, Gronemeyer P, Mateus-Pinilla N, Smith RL, 2023. Current and future habitat suitability models for four ticks of medical concern in Illinois, USA. Insects 14, 213. 10.3390/insects14030213. PubMed DOI PMC
Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF, 2021. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis 27, 616–619. 10.3201/eid2702.202731. PubMed DOI PMC
Lane RS, Moss RB, Hsu YP, Wei T, Mesirow ML, Kuo MM, 1999. Anti-arthropod saliva antibodies among residents of a community at high risk for Lyme disease in California. Am. J. Trop. Med. Hyg 61, 850–859. 10.4269/ajtmh.1999.61.850. PubMed DOI
Letunic I, Bork P, 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82. 10.1093/nar/gkae268. PubMed DOI PMC
Lewis LA, Radulovic ZM, Kim TK, Porter LM, Mulenga A, 2015. Identification of 24 h PubMed DOI PMC
Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI
Lu S, Martins LA, Kotal J, Ribeiro JMC, Tirloni L, 2023. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female PubMed DOI PMC
Machtinger ET, Nadolny RM, Vinyard BT, Eisen L, Hojgaard A, Haynes SA, Bowman L, Casal C, Li AY, 2021. Spatial heterogeneity of sympatric tick species and tick-borne pathogens emphasizes the need for surveillance for effective tick control. Vector Borne Zoonotic Dis. 21, 843–853. 10.1089/vbz.2021.0027. PubMed DOI PMC
Malouin R, Winch P, Leontsini E, Glass G, Simon D, Hayes EB, Schwartz BS, 2003. Longitudinal evaluation of an educational intervention for preventing tick bites in an area with endemic Lyme disease in Baltimore County, Maryland. Am. J. Epidemiol 157, 1039–1051. 10.1093/aje/kwg076. PubMed DOI
Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ, 2020. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet 395, 1998–2007. 10.1016/S0140-6736(20)31048-5. PubMed DOI PMC
Marques A, Okpali G, Liepshutz K, Ortega-Villa AM, 2022. Characteristics and outcome of facial nerve palsy from Lyme neuroborreliosis in the United States. Ann. Clin. Transl. Neurol 9, 41–49. 10.1002/acn3.51488. PubMed DOI PMC
Marques A, Telford SR 3rd, Turk SP, Chung E, Williams C, Dardick K, Krause PJ, Brandeburg C, Crowder CD, Carolan HE, Eshoo MW, Shaw PA, Hu LT, 2014a. Xenodiagnosis to detect PubMed DOI PMC
Marques A, Telford SR 3rd, Turk SP, Chung E, Williams C, Dardick K, Krause PJ, Brandeburg C, Crowder CD, Carolan HE, Eshoo MW, Shaw PA, Hu LT, 2014b. Xenodiagnosis to detect PubMed DOI PMC
Marques AR, Strle F, Wormser GP, 2021. Comparison of Lyme disease in the United States and Europe. Emerg. Infect. Dis 27, 2017–2024. 10.3201/eid2708.204763. PubMed DOI PMC
Mathieu-Daude F, Claverie A, Plichart C, Boulanger D, Mphande FA, Bossin HC, 2018. Specific human antibody responses to PubMed DOI PMC
McNally KL, Mitzel DN, Anderson JM, Ribeiro JM, Valenzuela JG, Myers TG, Godinez A, Wolfinbarger JB, Best SM, Bloom ME, 2012. Differential salivary gland transcript expression profile in PubMed DOI PMC
Mihaljica D, Markovic D, Radulovic Z, Mulenga A, Cakic S, Sukara R, Milanovic Z, Tomanovic S, 2017a. Assessment of using recombinant PubMed DOI
Mihaljica D, Markovic D, Radulovic Z, Mulenga A, Cakic S, Sukara R, Samardzic J, Tomanovic S, 2017b. PubMed DOI
Mihaljica D, Markovic D, Repac J, Bozic B, Radulovic Z, Veinovic G, Sukara R, Ristanovic E, Chochlakis D, Nedeljkovic BB, Tomanovic S, 2021. Exploring immunogenicity of tick salivary AV422 protein in persons exposed to ticks: prospects for utilization. Exp. Appl. Acarol 85, 83–99. 10.1007/s10493-021-00653-z. PubMed DOI
Minh BQ, Dang CC, Vinh LS, Lanfear R, 2021. QMaker: fast and accurate method to estimate empirical models of protein evolution. Syst. Biol 70, 1046–1060. 10.1093/sysbio/syab010. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R, 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol 37, 1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC
Molaei G, Eisen LM, Price KJ, Eisen RJ, 2022. Range expansion of native and invasive ticks: a looming public health threat. J. Infect. Dis 226, 370–373. 10.1093/infdis/jiac249. PubMed DOI PMC
Mulenga A, Khumthong R, Chalaire KC, 2009. PubMed DOI PMC
Nadelman RB, Nowakowski J, Forseter G, Goldberg NS, Bittker S, Cooper D, Aguero-Rosenfeld M, Wormser GP, 1996. The clinical spectrum of early Lyme borreliosis in patients with culture-confirmed erythema migrans. Am. J. Med 100, 502–508. 10.1016/s0002-9343(95)99915-9. PubMed DOI
Nelder MP, Russell CB, Johnson S, Li Y, Cronin K, Cawston T, Patel SN, 2022. American dog ticks along their expanding range edge in Ontario, Canada. Sci. Rep 12, 11063. 10.1038/s41598-022-15009-9. PubMed DOI PMC
Ng YQ, Gupte TP, Krause PJ, 2021. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol. 43, e12819. 10.1111/pim.12819. PubMed DOI
Nguyen TT, Kim TH, Bencosme-Cuevas E, Berry J, Gaithuma ASK, Ansari MA, Kim TK, Tirloni L, Radulovic Z, Moresco JJ, Yates JR 3rd, Mulenga A, 2024. A tick saliva serpin, IxsS17 inhibits host innate immune system proteases and enhances host colonization by Lyme disease agent. PLoS Pathog. 20, e1012032. 10.1371/journal.ppat.1012032. PubMed DOI PMC
Nicholas K., 2000. GeneDoc: multiple sequence alignment editor. Available from: https://github.com/karlnicholas/GeneDoc (accessed 24 August 2024).
Nigrovic LE, Neville DN, Balamuth F, Bennett JE, Levas MN, Garro AC, for Pedi Lyme N, 2019. A minority of children diagnosed with Lyme disease recall a preceding tick bite. Ticks Tick Borne Dis. 10, 694–696. 10.1016/j.ttbdis.2019.02.015. PubMed DOI
Ogden NH, Bouchard C, Badcock J, Drebot MA, Elias SP, Hatchette TF, Koffi JK, Leighton PA, Lindsay LR, Lubelczyk CB, Peregrine AS, Smith RP, Webster D, 2019. What is the real number of Lyme disease cases in Canada? BMC Public Health 19, 849. 10.1186/s12889-019-7219-x. PubMed DOI PMC
Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, Fischer L, Ward J, Valenzuela JG, 2006. From transcriptome to immunome: identification of DTH inducing proteins from a PubMed DOI
Parmar A, Grewal AS, & Dhillon P, 1996. Immunological cross-reactivity between salivary gland proteins of PubMed DOI
Piyasiri SB, Senanayake S, Samaranayake N, Doh S, Iniguez E, Kamhawi S, & Karunaweera ND, 2024. rPagSP02+rPagSP06 recombinant salivary antigen is a reliable biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. Research Square. 10.21203/rs.3.rs-4633976/v1. PubMed DOI PMC
Porter L, Radulovic Z, Kim T, Braz GR, Da Silva Vaz I Jr., & Mulenga A, 2015. Bioinformatic analyses of male and female PubMed DOI PMC
Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, & Wikel SK, 2006. An annotated catalog of salivary gland transcripts from PubMed DOI
Ribeiro JM, Mans BJ, & Arca B, 2010. An insight into the sialome of blood-feeding Nematocera. Insect Biochem. Mol. Biol 40, 767–784. 10.1016/j.ibmb.2010.08.002. PubMed DOI PMC
Ribeiro JMC, & Mans BJ, 2020. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell. Infect. Microbiol 10, 374. 10.3389/fcimb.2020.00374. PubMed DOI PMC
Rochlin I, Benach JL, Furie MB, Thanassi DG, & Kim HK, 2023. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA. Ticks Tick Borne Dis. 14, 102088. 10.1016/j.ttbdis.2022.102088. PubMed DOI PMC
Sanders ML, Glass GE, Nadelman RB, Wormser GP, Scott AL, Raha S, Ritchie BC, Jaworski DC, & Schwartz BS, 1999. Antibody levels to recombinant tick calreticulin increase in humans after exposure to Ixodes scapularis (Say) and are correlated with tick engorgement indices. Am. J. Epidemiol 149, 777–784. 10.1093/oxfordjournals.aje.a009887. PubMed DOI
Sanders ML, Jaworski DC, Sanchez JL, DeFraites RF, Glass GE, Scott AL, Raha S, Ritchie BC, Needham GR, & Schwartz BS, 1998. Antibody to a cDNA-derived calreticulin protein from PubMed DOI
Sanders ML, Scott AL, Glass GE, & Schwartz BS, 1996. Salivary gland changes and host antibody responses associated with feeding of male lone star ticks (Acari: Ixodidae). J. Med. Entomol 33, 628–634. 10.1093/jmedent/33.4.628. PubMed DOI
Schwartz BS, Ford DP, Childs JE, Rothman N, Thomas RJ, 1991. Anti-tick saliva antibody: a biologic marker of tick exposure that is a risk factor for Lyme disease seropositivity. Am. J. Epidemiol 134, 86–95. 10.1093/oxfordjournals.aje.a115996. PubMed DOI
Schwartz BS, Goldstein MD, 1990. Lyme disease in outdoor workers: risk factors, preventive measures, and tick removal methods. Am. J. Epidemiol 131, 877–885. 10.1093/oxfordjournals.aje.a115578. PubMed DOI
Schwartz BS, Goldstein MD, Childs JE, 1993. Antibodies to PubMed DOI PMC
Schwartz BS, Goldstein MD, Childs JE, 1994. Longitudinal study of PubMed DOI
Schwartz BS, Ribeiro JM, Goldstein MD, 1990. Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am. J. Epidemiol 132, 58–66. 10.1093/oxfordjournals.aje.a115643. PubMed DOI
Schwartz BS, Sanchez JL, Sanders ML, DeFraites RF, 1996. Tick avoidance behaviors associated with a decreased risk of anti-tick salivary gland protein antibody seropositivity in military personnel exposed to PubMed DOI
Shapiro SZ, Voigt WP, Fujisaki K, 1986. Tick antigens recognized by serum from a guinea pig resistant to infestation with the tick PubMed DOI
Sonenshine DE, 2018. Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health 15. 10.3390/ijerph15030478. PubMed DOI PMC
Tardy O, Acheson ES, Bouchard C, Chamberland E, Fortin A, Ogden NH, Leighton PA, 2023. Mechanistic movement models to predict geographic range expansions of ticks and tick-borne pathogens: case studies with PubMed DOI
Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H, 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol 40, 1023–1025. 10.1038/s41587-021-01156-3. PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ, 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. 10.1093/nar/22.22.4673. PubMed DOI PMC
Tirloni L, Kim TK, Coutinho ML, Ali A, Seixas A, Termignoni C, Mulenga A, da Silva Vaz I Jr., 2016. The putative role of PubMed DOI PMC
Tirloni L, Kim TK, Pinto AFM, Yates JR 3rd, da Silva Vaz I Jr., Mulenga A, 2017. Tick-host range adaptation: changes in protein profiles in unfed adult PubMed DOI PMC
Tirloni L, Lu S, Calvo E, Sabadin G, Di Maggio LS, Suzuki M, Nardone G, da Silva Vaz I Jr., Ribeiro JMC, 2020. Integrated analysis of sialotranscriptome and sialoproteome of the brown dog tick Rhipicephalus sanguineus (s.l.): insights into gene expression during blood feeding. J. Proteomics 229, 103899. 10.1016/j.jprot.2020.103899. PubMed DOI PMC
Valenzuela JG, 2004. Exploring tick saliva: from biochemistry to 'sialomes' and functional genomics. Parasitology 129 Suppl, S83–94. 10.1017/s0031182004005189 PubMed DOI
Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM, 2002. Exploring the sialome of the tick PubMed DOI
Zhang X, Zhang B, Masoudi A, Wang X, Xue X, Li M, Xiao Q, Wang M, Liu J, Wang H, 2020. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick ( PubMed DOI
Zheng W, Hu H, Jiang J, Sun X, Fu R, Tao H, Liu Y, Chen H, Ma H, Chen S, 2022. PubMed DOI