Inhibition of miR-20a promotes neural stem cell survival under oxidative stress conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40641624
PubMed Central
PMC12240997
DOI
10.3389/fnins.2025.1601101
Knihovny.cz E-zdroje
- Klíčová slova
- microRNA-20a, neural apoptosis, neural stem cells, neuroprotection, oxidative stress,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Oxidative stress (OS) is a key contributor to secondary damage following spinal cord injury (SCI), leading to neural stem cell (NSC) dysfunction and apoptosis. MicroRNA-20a (miR-20a) is upregulated after SCI and plays a role in regulating apoptosis and survival pathways. This study explores the therapeutic potential of miR-20a inhibition in mitigating OS-induced damage in NSCs. METHODS: Human iPSC-derived NSCs were subjected to oxidative stress by exposure to 100 µM hydrogen peroxide (H2O2) for 2 hours, followed by treatment with a miR-20a inhibitor (100 nM) to attenuate the adverse effects. Metabolic activity was evaluated using the Alamar Blue assay. Apoptotic responses and miR-20a expression levels were assessed via flow cytometry, RT-qPCR, and Western blot analysis. RESULTS: NSCs exposed to OS showed a marked reduction in metabolic activity. However, treatment with a miR-20a inhibitor over 72 h significantly improved cell survival and metabolic activity in a time-dependent manner compared to untreated stressed cells. DISCUSSION: Our findings suggest that miR-20a inhibition mitigates OS-induced cytotoxicity and promotes NSC viability, presenting a potential therapeutic approach for enhancing neural tissue regeneration.
Department of Neuroregeneration Institute of Experimental Medicine CAS Prague Czechia
Department of Neuroscience 2nd Medical Faculty Charles University Prague Czechia
Zobrazit více v PubMed
Adusumilli V. S., Walker T. L., Overall R. W., Klatt G. M., Zeidan S. A., Zocher S., et al. (2021). ROS dynamics delineate functional states of hippocampal neural stem cells and link to their activity-dependent exit from quiescence. Cell Stem Cell 28, 300–314.e6. doi: 10.1016/J.STEM.2020.10.019, PMID: PubMed DOI PMC
Alizadeh A., Dyck S. M., Karimi-Abdolrezaee S. (2019). Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 10:441408. doi: 10.3389/FNEUR.2019.00282, PMID: PubMed DOI PMC
Alonzi T., Maritano D., Gorgoni B., Rizzuto G., Libert C., Poli V. (2001). Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene activation in the liver. Mol. Cell. Biol. 21, 1621–1632. doi: 10.1128/MCB.21.5.1621-1632.2001, PMID: PubMed DOI PMC
Andrabi S. A., No S. K., Yu S. W., Wang H., Koh D. W., Sasaki M., et al. (2006). Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl. Acad. Sci. USA 103, 18308–18313. doi: 10.1073/PNAS.0606526103 PubMed DOI PMC
Anjum A., Yazid M. D., Daud M. F., Idris J., Hwei Ng A. M., Naicker A. S., et al. (2020). Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int. J. Mol. Sci. 21, 1–35. doi: 10.3390/IJMS21207533, PMID: PubMed DOI PMC
Bertrand N., Castro D. S., Guillemot F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530. doi: 10.1038/NRN874, PMID: PubMed DOI
Biswas K., Alexander K., Francis M. M. (2022). Reactive oxygen species: angels and demons in the life of a Neuron. Neuro Science 3, 130–145. doi: 10.3390/NEUROSCI3010011, PMID: PubMed DOI PMC
Carraro G., El-Hashash A., Guidolin D., Tiozzo C., Turcatel G., Young B. M., et al. (2009). miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-cadherin distribution. Dev. Biol. 333, 238–250. doi: 10.1016/j.ydbio.2009.06.020, PMID: PubMed DOI PMC
Catalá A., Díaz M. (2016). Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Front. Physiol. 7:423. doi: 10.3389/FPHYS.2016.00423 PubMed DOI PMC
Chan P. H. (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 29, 1943–1949. doi: 10.1007/S11064-004-6869-X, PMID: PubMed DOI
Chan G., Nogalski M. T., Bentz G. L., Smith M. S., Parmater A., Yurochko A. D. (2010). PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes. J. Immunol. 184, 3213–3222. doi: 10.4049/JIMMUNOL.0903025, PMID: PubMed DOI PMC
Chen L., Xu B., Liu L., Luo Y., Yin J., Zhou H., et al. (2010). Hydrogen peroxide inhibits mTOR signaling by activation of AMPKα leading to apoptosis of neuronal cells. Lab. Investig. 90, 762–773. doi: 10.1038/labinvest.2010.36, PMID: PubMed DOI PMC
Connor J., Paks C. H., Zwaalt R. F. A., Schroitst A. J. (1992). Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process. J. Biol. Chem. 267, 19412–19417. PubMed
Dello Russo C., Lisi L., Tringali G., Navarra P. (2009). Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochem. Pharmacol. 78, 1242–1251. doi: 10.1016/J.BCP.2009.06.097, PMID: PubMed DOI
Devaux P. F. (1991). Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30, 1163–1173. doi: 10.1021/BI00219A001, PMID: PubMed DOI
Dimitrijevic M. R., Danner S. M., Mayr W. (2015). Neurocontrol of movement in humans with spinal cord injury. Artif. Organs 39, 823–833. doi: 10.1111/AOR.12614, PMID: PubMed DOI
Epling-Burnette P. K., Liu J. H., Catlett-Falcone R., Turkson J., Oshiro M., Kothapalli R., et al. (2001). Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J. Clin. Invest. 107, 351–361. doi: 10.1172/JCI9940 PubMed DOI PMC
Estaquier J., Vallette F., Vayssiere J. L., Mignotte B. (2012). The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol. 942, 157–183. doi: 10.1007/978-94-007-2869-1_7/COVER PubMed DOI
Fresno Vara J. Á., Casado E., de Castro J., Cejas P., Belda-Iniesta C., González-Barón M. (2004). PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193–204. doi: 10.1016/j.ctrv.2003.07.007, PMID: PubMed DOI
Galluzzi L., Blomgren K., Kroemer G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10:665. doi: 10.1038/nrn2665, PMID: PubMed DOI
Gao X., Qin T., Mao J., Zhang J., Fan S., Lu Y., et al. (2019). PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J Exp Clinic Cancer Res 38:256. doi: 10.1186/S13046-019-1260-6, PMID: PubMed DOI PMC
Gong J., Shen Y., Jiang F., Wang Y., Chu L., Sun J., et al. (2022). MicroRNA-20a promotes non-small cell lung cancer proliferation by upregulating PD-L1 by targeting PTEN. Oncol. Lett. 23:148. doi: 10.3892/OL.2022.13269, PMID: PubMed DOI PMC
Goswami R., Kilkus J., Dawson S., Dawson G. (1999). Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of ceramide in response to pro-apoptotic stimuli. J. Neurosci. Res. 847–854 [Preprint] doi: 10.1002/(SICI)1097-4547(19990915)57:6 PubMed DOI
Gutierrez J., Ballinger S. W., Darley-Usmar V. M., Landar A. (2006). Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ. Res. 99, 924–932. doi: 10.1161/01.RES.0000248212.86638.E9, PMID: PubMed DOI
Herrmann J. E., Imura T., Song B., Qi J., Ao Y., Nguyen T. K., et al. (2008). STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243. doi: 10.1523/JNEUROSCI.1709-08.2008, PMID: PubMed DOI PMC
Islam M. T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 39, 73–82. doi: 10.1080/01616412.2016.1251711, PMID: PubMed DOI
Jee M. K., Jung J. S., Im Y. B., Jung S. J., Kang S. K. (2012). Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum. Gene Ther. 23, 508–520. doi: 10.1089/HUM.2011.121, PMID: PubMed DOI
Jung S. Y., Kim D. Y., Yune T. Y., Shin D. H., Baek S. B., Kim C. J. (2014). Treadmill exercise reduces spinal cord injury-induced apoptosis by activating the PI3K/Akt pathway in rats. Exp. Ther. Med. 7, 587–593. doi: 10.3892/ETM.2013.1451, PMID: PubMed DOI PMC
Kamsler A., Segal M. (2007). Control of neuronal plasticity by reactive oxygen species. Antioxid. Redox Signal. 9, 165–167. doi: 10.1089/ARS.2007.9.165, PMID: PubMed DOI
Li H., Zhang X., Qi X., Zhu X., Cheng L. (2019). Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway. Int. J. Biol. Sci. 15, 277–286. doi: 10.7150/IJBS.30348, PMID: PubMed DOI PMC
Liang W., Jin W., Ni H., Dai Y., Wang H., Lu T., et al. (2010). Effects of tert-butylhydroquinone on intestinal inflammatory response and apoptosis following traumatic brain injury in mice. Mediat. Inflamm. 2010:564. doi: 10.1155/2010/502564, PMID: PubMed DOI PMC
Liu N. K., Wang X. F., Lu Q. B., Xu X. M. (2009). Altered microRNA expression following traumatic spinal cord injury. Exp. Neurol. 219, 424–429. doi: 10.1016/J.EXPNEUROL.2009.06.015, PMID: PubMed DOI PMC
Liu X. J., Zheng X. P., Zhang R., Guo Y. L., Wang J. H. (2015). Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int. J. Clin. Exp. Pathol. 8, 3811–3818. PubMed PMC
Lu D. Y., Liou H. C., Tang C. H., Fu W. M. (2006). Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1alpha. Biochem. Pharmacol. 72, 992–1000. doi: 10.1016/J.BCP.2006.06.038, PMID: PubMed DOI
Lv X., Liang J., Wang Z. (2024). MiR-21-5p reduces apoptosis and inflammation in rats with spinal cord injury through PI3K/AKT pathway. Panminerva Med. 66, 256–265. doi: 10.23736/S0031-0808.20.03974-9, PMID: PubMed DOI
Magistretti P. J., Allaman I. (2015). A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901. doi: 10.1016/J.NEURON.2015.03.035, PMID: PubMed DOI
Maiese K. (2015). Stem cell guidance through the mechanistic target of rapamycin. World J. Stem Cells 7, 999–1009. doi: 10.4252/WJSC.V7.I7.999, PMID: PubMed DOI PMC
Martinez B., Peplow P. (2020). Micrornas as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regen. Res. 15:307. doi: 10.4103/1673-5374.280307, PMID: PubMed DOI PMC
Mormone E., Iorio E. L., Abate L., Rodolfo C. (2023). Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming. Front. Neurosci. 17:1073689. doi: 10.3389/FNINS.2023.1073689, PMID: PubMed DOI PMC
Nieto-Diaz M., Esteban F. J., Reigada D., Muñoz-Galdeano T., Yunta M., Caballero-López M., et al. (2014). MicroRNA dysregulation in spinal cord injury: causes, consequences, and therapeutics. Front. Cell. Neurosci. 8:53. doi: 10.3389/FNCEL.2014.00053 PubMed DOI PMC
Polentes J., Jendelova P., Cailleret M., Braun H., Romanyuk N., Tropel P., et al. (2012). Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 21, 2587–2602. doi: 10.3727/096368912X653228, PMID: PubMed DOI
Riley J. K., Takeda K., Akira S., Schreiber R. D. (1999). Interleukin-10 receptor signaling through the JAK-STAT pathway: requirement for two distinct receptor-derived signals for anti-inflammatory action. J. Biol. Chem. 274, 16513–16521. doi: 10.1074/JBC.274.23.16513, PMID: PubMed DOI
Romanyuk N., Amemori T., Turnovcova K., Prochazka P., Onteniente B., Sykova E., et al. (2015). Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transplant. 24, 1781–1797. doi: 10.3727/096368914X684042, PMID: PubMed DOI
Sekiguchi A., Kanno H., Ozawa H., Yamaya S., Itoi E. (2012). Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J. Neurotrauma 29, 946–956. doi: 10.1089/NEU.2011.1919 PubMed DOI
Serrano F., Klann E. (2004). Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev. 3, 431–443. doi: 10.1016/J.ARR.2004.05.002, PMID: PubMed DOI
Shin D. Y., Kim G. Y., Lee J. H., Choi B. T., Yoo Y. H., Choi Y. H. (2012). Apoptosis induction of human prostate carcinoma DU145 cells by diallyl disulfide via modulation of JNK and PI3K/AKT signaling pathways. Int. J. Mol. Sci. 13, 14158–14171. doi: 10.3390/IJMS131114158, PMID: PubMed DOI PMC
Silva N. A., Sousa N., Reis R. L., Salgado A. J. (2014). From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114, 25–57. doi: 10.1016/J.PNEUROBIO.2013.11.002, PMID: PubMed DOI
Stohs S. J., Bagchi D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321–336. doi: 10.1016/0891-5849(94)00159-H, PMID: PubMed DOI
Strickland E. R., Hook M. A., Balaraman S., Huie J. R., Grau J. W., Miranda R. C. (2011). MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186, 146–160. doi: 10.1016/J.NEUROSCIENCE.2011.03.063, PMID: PubMed DOI PMC
Tang Z., Baykal A. T., Gao H., Quezada H. C., Zhang H., Bereczki E., et al. (2014). MTor is a signaling hub in cell survival: a mass-spectrometry-based proteomics investigation. J. Proteome Res. 13, 2433–2444. doi: 10.1021/PR500192G, PMID: PubMed DOI
Taylor R. C., Cullen S. P., Martin S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241. doi: 10.1038/NRM2312, PMID: PubMed DOI
Uyeda A., Muramatsu R. (2020). Molecular mechanisms of central nervous system axonal regeneration and remyelination: A review. Int. J. Mol. Sci. 21, 1–14. doi: 10.3390/ijms21218116 PubMed DOI PMC
Varma A. K., Das A., Wallace G., Barry J., Vertegel A. A., Ray S. K., et al. (2013). Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem. Res. 38, 895–905. doi: 10.1007/S11064-013-0991-6, PMID: PubMed DOI PMC
Wang X., Michaelis E. K. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2:1224. doi: 10.3389/FNAGI.2010.00012 /BIBTEX PubMed DOI PMC
Wang Y., Yuan Y., Gao Y., Li X., Tian F., Liu F., et al. (2019). MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Dev. 41, 649–661. doi: 10.1016/J.BRAINDEV.2019.04.010, PMID: PubMed DOI
Wildburger N. C., Lin-Ye A., Baird M. A., Lei D., Bao J. (2009). Neuroprotective effects of blockers for T-type calcium channels. Mol. Neurodegener. 4, 1–8. doi: 10.1186/1750-1326-4-44 PubMed DOI PMC
Yang K., Yao R., Ren L., Wang S., Zhang M. (2021). Euxanthone inhibits traumatic spinal cord injury via anti-oxidative stress and suppression of p38 and PI3K/Akt signaling pathway in a rat model. Transl. Neurosci. 12, 114–126. doi: 10.1515/TNSCI-2021-0012, PMID: PubMed DOI PMC
Yinming C., Benlong W., Hai Z. (2018). Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways. Exp. Ther. Med. 15:72. doi: 10.3892/ETM.2018.6072 PubMed DOI PMC
Yu M., Wang Z., Wang D., Aierxi M., Ma Z., Wang Y. (2023). Oxidative stress following spinal cord injury: from molecular mechanisms to therapeutic targets. J. Neurosci. Res. 101, 1538–1554. doi: 10.1002/JNR.25221, PMID: PubMed DOI
Yunta M., Nieto-Díaz M., Esteban F. J., Caballero-López M., Navarro-Ruíz R., Reigada D., et al. (2012). Microrna dysregulation in the spinal cord following traumatic injury. PLoS One 7:534. doi: 10.1371/journal.pone.0034534, PMID: PubMed DOI PMC
Zhao R., Wu X., Bi X. Y., Yang H., Zhang Q. (2022). Baicalin attenuates blood-spinal cord barrier disruption and apoptosis through PI3K/Akt signaling pathway after spinal cord injury. Neural Regen. Res. 17, 1080–1087. doi: 10.4103/1673-5374.324857, PMID: PubMed DOI PMC