Electron attachment to CH3COCl molecule and clusters
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40642467
PubMed Central
PMC12242388
DOI
10.1039/d5ra02679b
PII: d5ra02679b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigate the electron attachment of acetyl chloride CH3COCl (AC) molecules and clusters in a molecular beam experiment and by extensive theoretical calculations. The main product of dissociative electron attachment (DEA) to the AC molecule is Cl-, which leads to the main (AC) n Cl- series in clusters. The weaker ion series identified in the cluster mass spectra correspond to (AC) n HCl2 - and hydrogen abstraction fragments [(AC) n -H]-, in full agreement with calculated energetics. We compare the present results for AC with previously studied trifluoroacetyl chloride CF3COCl (TFAC) and trichloroacetic acid CCl3COOH (TCA) molecules and clusters. DEA of the three isolated molecules results in the main fragment Cl-; however, the electron attachment to their clusters produces distinctly different cluster ions. This demonstrates that the outcomes of reactions of electrons with molecules in an environment cannot easily be predicted from the DEA of isolated molecules, and the solvent plays a key role in the process.
Zobrazit více v PubMed
Kimbrough R. D. Toxicity of chlorinated hydrocarbons and related compounds. Arch. Environ. Health. 1972;25:125. PubMed
Ahlborg U. G. Thunberg T. M. Spencer H. C. Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact. Crit. Rev. Toxicol. 1980;7:1. PubMed
Song Q. Kong F. Liu B.-F. Song X. Ren H.-Y. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. Environ. Sci. Technol. 2024;21:100420. PubMed PMC
Barnum T. P. Coates J. D. The biogeochemical cycling of chlorine. Geobiology. 2022;20:634. PubMed
Gribble G. The diversity of natural organochlorines in living organisms. Pure Appl. Chem. 1996;68:1699.
Engvild K. C. Chlorine-containing natural compounds in higher plants. Phytochemistry. 1986;25:781.
Heal M. R. Reeves N. M. Cape J. N. Atmospheric concentrations and deposition of trichloroacetic acid in Scotland: Results from a 2-year sampling campaign. Environ. Sci. Technol. 2003;37:2627. PubMed
Hoekstra E. J. Review of concentrations and chemistry of trichloroacetate in the environment. Chemosphere. 2003;52:355. PubMed
Cape 1 J. N. Forczek S. T. Gullner G. Mena-Benitez G. Schröder P. Matucha M. Progress in understanding the sources, deposition and above-ground fate of trichloroacetic acid. Environ. Sci. Pollut. Res. 2006;13:276. PubMed
Winterton N. Chlorine: the only green element – towards a wider acceptance of its role in natural cycles. Green Chem. 2000;2:173.
Burkholder J. B. Cox R. Ravishankara A. Atmospheric degradation of ozone depleting substances, their substitutes, and related species. Chem. Rev. 2015;115:3704. PubMed
Janoš J. Vinklárek I. S. Rakovský J. Mukhopadhyay D. P. Curchod B. F. E. Fárník M. Slavíček P. On the wavelength-dependent photochemistry of the atmospheric molecule CF3COCl. ACS Earth Space Chem. 2023;7:2275. PubMed PMC
Kocábková B. Ďurana J. Rakovský J. Pysanenko A. Fedor J. Ončák M. Fárník M. Electron-triggered processes in halogenated carboxylates: Dissociation pathways in CF3COCl and its clusters. Phys. Chem. Chem. Phys. 2024;26:5640. PubMed
Sanche L. Beyond radical thinking. Nature. 2009;461:358. PubMed
Sanche L. Low energy electron-driven damage in biomolecules. Eur. Phys. J. D. 2005;35:367.
Ingólfsson O. Weik F. Illenberger E. The reactivity of slow electrons with molecules at different degrees of aggregation: gas phase, clusters and condensed phase. Int. J. Mass Spectrom. 1996;155:1.
Bald I. Langer J. Tegeder P. Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. A short tribute to Prof. Eugen Illenberger's work in the field of negative ion chemistry. Int. J. Mass Spectrom. 2008;277:4.
Fabrikant I. I. Electron attachment to molecules in a cluster environment: suppression and enhancement effects. Eur. Phys. J. D. 2018;72:96. PubMed
Kocábková B. Schöpfer G. Ďurana J. Rakovský J. Poterya V. Gatt M. Jank D. Ončák M. Fárník M. Electron attachment to CCl3COOH molecule and clusters. Phys. Scr. 2024;99:125410.
Pelc A. Sailer W. Scheier P. Probst M. Mason N. J. Illenberger E. Märk T. D. Dissociative electron attachment to formic acid (HCOOH) Chem. Phys. Lett. 2002;361:277.
Sailer W. Pelc A. Probst M. Limtrakul J. Scheier P. Illenberger E. Märk T. D. Dissociative electron attachment to acetic acid (CH3COOH) Chem. Phys. Lett. 2003;378:250.
Langer J. Martin I. Karwasz G. Illenberger E. Chemical reactions in clusters of trifluoroacetic acid (CF3COOH) triggered by electrons at sub-excitation energy (<2 eV) Int. J. Mass Spectrom. 2006;249–250:477.
Kopyra J. König-Lehmann C. Illenberger E. Low energy (0–10 eV) electron driven reactions in the halogenated organic acids CCl3COOH, CClF2COOH, and CF3CHNH2COOH (trifluoroalanine) J. Chem. Phys. 2011;135:124307. PubMed
Kopyra J. König-Lehmann C. Szamrej I. Illenberger E. Unusual features in electron attachment to chlorodifluoroacetic acid (CClF2COOH): Strong dissociative electron attachment near 0 eV and associative attachment at 0.75 eV. Int. J. Mass Spectrom. 2009;285:131.
Hartke B. Global optimization. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:879.
Žilinskas A. A review of statistical models for global optimization. J. Global Oncol. 1992;2:145.
Choi S. H. Ko J. W. Manousiouthakis V. A stochastic approach to global optimization of chemical processes. Comput. Chem. Eng. 1999;23:1351.
Hartke B., Application of evolutionary algorithms to global cluster geometry optimization, in Applications of Evolutionary Computation in Chemistry, Structure and Bonding, ed. R. Johnson, 2004, vol. 110, pp. 33–53
Thangaraj R. Pant M. Abraham A. Bouvry P. Particle swarm optimization: Hybridization perspectives and experimental illustrations. Appl. Math. Comput. 2011;217:5208.
Zhang J. Dolg M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 2015;17:24173. PubMed
Hartke B. Global geometry optimization of clusters using genetic algorithms. J. Phys. Chem. 1993;97:9973.
Kubečka J. Besel V. Neefjes I. Knattrup Y. Kurtén T. Vehkamäki H. Elm J. Computational tools for handling molecular clusters: Configurational sampling, storage, analysis, and machine learning. ACS Omega. 2023;8:45115. PubMed PMC
Martínez-Núñez E. Barnes G. L. Glowacki D. R. Kopec S. Peláez D. Rodríguez A. Rodríguez-Fernández R. Shannon R. J. Stewart J. J. P. Tahoces P. G. Vazquez S. A. AutoMeKin2021: An open-source program for automated reaction discovery. J. Comput. Chem. 2021;42:2036. PubMed
Schöpfer G., Gatt M., and Ončák M., Genetic algorithms, 2024, https://git.uibk.ac.at/c7441332/genetic-algorithms
Hacaloglu J. Gokmen A. Suzer S. Mass spectrometric study of negative ions from acetyl derivatives. J. Phys. Chem. 1989;93:3418.
Fabrikant I. I. Caprasecca S. Gallup G. A. Gorfinkiel J. D. Electron attachment to molecules in a cluster environment. J. Chem. Phys. 2012;136:184301. PubMed
Fárník M. Fedor J. Kočišek J. Lengyel J. Pluhařová E. Poterya V. Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys. Chem. Chem. Phys. 2021;23:3195. PubMed
Fárník M. Lengyel J. Mass spectrometry of aerosol particle analogues in molecular beam experiments. Mass Spectrom. Rev. 2018;37:630. PubMed
Lengyel J. Kočišek J. Fárník M. Fedor J. Self-scavenging of electrons in Fe(CO)5 aggregates deposited on argon nanoparticles. J. Phys. Chem. C. 2016;120:7397.
Kočišek J. Pysanenko A. Fárník M. Fedor J. Microhydration prevents fragmentation of uracil and thymine by low-energy electrons. J. Phys. Chem. Lett. 2016;7:3401. PubMed
Kappe M. Schiller A. Gruber E. Jank D. Gatt M. Schöpfer G. Ončák M. Ellis A. M. Scheier P. Spectroscopy of C60+ and C120+in the mid-infrared. J. Chem. Phys. 2023;159:204302. PubMed
Hütter M. Schöpfer G. Salzburger M. Beyer M. K. Ončák M. Master equation modeling of water dissociation in small ionic water clusters: Ag+(H2O)n, n = 4–6. RSC Adv. 2024;14:22185. PubMed PMC
Chai J.-D. Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J., Gaussian 16 Revision A.03, Gaussian Inc. Wallingford CT, 2016
Bannwarth C. Ehlert S. Grimme S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019;15:1652. PubMed
Bannwarth C. Caldeweyher E. Ehlert S. Hansen A. Pracht P. Seibert J. Spicher S. Grimme S. Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2020;11:e01493.
Zhang Q. Zhang W. Li Y. Wang J. Zhang L. Hou T. A rule-based algorithm for automatic bond type perception. J. Cheminf. 2012;4:26. PubMed PMC
Siek J., An implementation of graph isomorphism testing, 2001, https://www.boost.org/doc/libs/release/libs/graph/doc/isomorphism.html
Gatt M., Schöpfer G., and Ončák M., structure_clustering – cluster molecular structures into groups of similar ones, 2024, https://github.com/photophys/structure_clustering