Comprehensive Experimental Analysis of the Effect of Drilled Material on Torque Using Machine Learning Decision Trees
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2025-025
SGS-2025-025
PubMed
40649633
PubMed Central
PMC12251476
DOI
10.3390/ma18133145
PII: ma18133145
Knihovny.cz E-zdroje
- Klíčová slova
- C45 steel (AISI 1045), case-hardened steel 16MnCr5, decision trees, drilling, machine learning, torque,
- Publikační typ
- časopisecké články MeSH
This article deals with drilling, the most common and simultaneously most important traditional machining operation, and which is significantly influenced by the properties of the machined material itself. To fully understand this process, both from a theoretical and practical perspective, it is essential to examine the influence of technological and tool-related factors on its various parameters. Based on the evaluation of experimentally obtained data using advanced statistical methods and machine learning decision trees, we present a detailed analysis of the effects of technological factors (fn, vc) and tool-related factors (D, εr, α0, ωr) on variations in torque (Mc) during drilling of two types of engineering steels: carbon steel (C45) and case-hardening steel (16MnCr5). The experimental verification was conducted using CTS20D cemented carbide tools coated with a Triple Cr SHM layer. The analysis revealed a significant influence of the material on torque variation, accounting for a share of 1.430%. The experimental verification confirmed the theoretical assumption that the nominal tool diameter (D) has a key effect (53.552%) on torque variation. The revolution feed (fn) contributes 36.263%, while the tool's point angle (εr) and helix angle (ωr) influence torque by 1.189% and 0.310%, respectively. No significant effect of cutting speed (vc) on torque variation was observed. However, subsequent machine learning analysis revealed the complexity of interdependencies between the input factors and the resulting torque.
Zobrazit více v PubMed
Kumar B.S., Baskar N., Rajaguru K. Drilling operation: A review. Mater. Today Proc. 2020;21:926–933. doi: 10.1016/j.matpr.2019.08.160. DOI
Pelikán L., Slaný M., Beránek L., Andronov V., Nečas M., Čepová L. Experimental Investigation of Suitable Cutting Conditions of Dry Drilling into High-Strength Structural Steel. Materials. 2021;14:4381. doi: 10.3390/ma14164381. PubMed DOI PMC
Kurt M., Bagci E., Kaynak Y. Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int. J. Adv. Manuf. Technol. 2009;40:458–469. doi: 10.1007/s00170-007-1368-2. DOI
Makhesana M.A., Bagga P.J., Patel K.M., Taha-Tijerina J.J. Effects of Machining Parameters of C45 Steel Applying Vegetable Lubricant with Minimum Quantity Cooling Lubrication (MQCL) Lubricants. 2023;11:332. doi: 10.3390/lubricants11080332. DOI
Sklenička J., Hnátík J., Fulemová J., Gombár M., Vagaská A., Jirásko A. Experimental Analysis of Effect of Machined Material on Cutting Forces during Drilling. Materials. 2024;17:2775. doi: 10.3390/ma17112775. PubMed DOI PMC
Chen W.C., Tsao C.C. Cutting performance of different coated twist drills. J. Mater. Process. Technol. 1999;88:203–207. doi: 10.1016/S0924-0136(98)00396-3. DOI
Rui L., Parag H., Albert J.S. High-throughput drilling of titanium alloys. Int. J. Mach. Tools Manuf. 2007;47:63–74. doi: 10.1016/j.ijmachtools.2006.02.012. DOI
Stephenson D.A., Agapiou J.S. Metal Cutting Theory and Practice. 3rd ed. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: London, UK: New York, NY, USA: 2018. p. 969. DOI
Schulz H., Moriwaki T. High-speed machining. CIRP Ann.—Manuf. Technol. 1992;41:637–645. doi: 10.1016/S0007-8506(07)63250-8. DOI
Rotberg J., Lenz E., Levin M. Drill and clamping interface in high-performance drilling. Int. J. Adv. Manuf. Technol. 1998;14:229–238. doi: 10.1007/BF01199877. DOI
Guibert N., Paris H., Rech J. A numerical simulator to predict the dynamical behavior of the self-vibratory drilling head. Int. J. Mach. Tools Manuf. 2008;48:644–655. doi: 10.1016/j.ijmachtools.2007.11.003. DOI
Rivero A., Aramendi G., Herranz S., López de Lacalle L.N. An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminium alloys. Int. J. Adv. Manuf. Technol. 2006;28:1–11. doi: 10.1007/s00170-004-2349-3. DOI
Tsao C.C., Hocheng H. Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J. Mater. Process. Technol. 2008;203:342–348. doi: 10.1016/j.jmatprotec.2006.04.126. DOI
Heinemann R.K., Hinduja S. Investigating the feasibility of DLC-coated twist drills in deep-hole drilling. Int. J. Adv. Manuf. Technol. 2009;44:862–869. doi: 10.1007/s00170-008-1912-8. DOI
Jurko J., Panda A. Evaluation of the Surface Roughnes the Machined Surface of Holes during the Drilling of Stainless Steels DIN 1.4301. Appl. Mech. Mater. 2014;692:401–405. doi: 10.4028/www.scientific.net/AMM.692.401. DOI
Řehoř J., Fulemová J., Kutlwašer J., Gombár M., Harničárová M., Kušnerová M., Vagaská A., Povolný M., Valíček J., Zatloukal T. ANOVA analysis for estimating the accuracy and surface roughness of precisely drilled holes of steel 42CrMo4 QT. Int. J. Adv. Manuf. Technol. 2023;126:675–695. doi: 10.1007/s00170-023-11115-8. DOI
Li X., Zhai C., He W., Lu Y., Zhang B. Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083. Materials. 2023;16:6686. doi: 10.3390/ma16206686. PubMed DOI PMC
Machno M. Impact of Process Parameters on the Quality of Deep Holes Drilled in Inconel 718 Using EDD. Materials. 2019;12:2298. doi: 10.3390/ma12142298. PubMed DOI PMC
Bi S., Liang J. Experimental studies and optimization of process parameters for burrs in dry drilling of stacked metal materials. Int. J. Adv. Manuf. Technol. 2011;53:867–876. doi: 10.1007/s00170-010-2877-y. DOI
Heinemann R., Hinduja S., Barrow G., Petuelli G. The performance of small diameter twist drills in deep-hole drilling. ASME J. Manuf. Sci. Eng. 2006;118:884–892. doi: 10.1115/1.2335859. DOI
Dasch J.M., Ang C.C., Wong C.A., Cheng Y.T., Weiner A.W., Lev L.C., Konca E. A comparison of five categories of carbon-based tool coatings for dry drilling of aluminum. Surf. Coat. Technol. 2006;200:2970–2977. doi: 10.1016/j.surfcoat.2005.04.025. DOI
Aamir M., Sharif A., Zahir M.Z., Giasin K., Tolouei-Rad M. Experimental Assessment of Hole Quality and Tool Condition in the Machining of an Aerospace Alloy. Machines. 2023;11:726. doi: 10.3390/machines11070726. DOI
Pizzi M., Costetti A., De Gaetano F., Ferroni M., Arleo F., Boschetti F., Annoni M. A Cutting Force and Hole Geometry Study for Precision Deep-Hole Microdrilling of Magnesium. Micromachines. 2024;15:814. doi: 10.3390/mi15070814. PubMed DOI PMC
Bakkal M., Shih A.J., McSpadden S.B., Liu C.T., Scattergood R.O. Light emission, chip morphology, and burr formation in drilling the bulk metallic glass. Int. J. Mach. Tools Manuf. 2005;45:741–752. doi: 10.1016/j.ijmachtools.2004.11.004. DOI
Basavarajappa S., Chandramohan G., Davim J.P. Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J. Mater. Process. Technol. 2008;196:332–338. doi: 10.1016/j.jmatprotec.2007.05.043. DOI
Oniszczuk-Świercz D., Świercz R., Chmielewski T., Sałaciński T. Electrical discharge machining holes on nickel-based alloys; Proceedings of the 31st International Conference on Metallurgy and Materials; Brno, Czech Republic. 18–19 May 2022; DOI
Straka Ľ. Optimization of Qualitative Indicators of the Machined Surface in Symmetrical Machining of TS by WEDM Technology. Symmetry. 2025;17:229. doi: 10.3390/sym17020229. DOI
Barbosa P.A., Costa E.S., Guesser W.L., Machado A.R. Comparative study of the machinability of austempered and pearlitic ductile irons in drilling process. J. Braz. Soc. Mech. Sci. Eng. 2015;37:115–122. doi: 10.1007/s40430-014-0161-z. DOI
Kilickap E. Modeling and optimization of burr height in drilling of Al-7075 using Taguchi method and response surface methodology. Int. J. Adv. Manuf. Technol. 2010;49:911–923. doi: 10.1007/s00170-009-2469-x. DOI
Rahman A.A., Mamat A., Abdullah Wagiman A. Effect of machining parameters on hole quality of micro drilling for brass. Mod. Appl. Sci. 2009;3:221. doi: 10.5539/mas.v3n5p221. DOI
Kilickap E., Huseyinoglu M., Yardimeden A. Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 2011;52:79–88. doi: 10.1007/s00170-010-2710-7. DOI
Hrehova S., Knapcikova L. The Study of Machine Learning Assisted the Design of Selected Composites Properties. Appl. Sci. 2022;12:10863. doi: 10.3390/app122110863. DOI
López de Lacalle L.N., Rivero A., Lamikiz A. Mechanistic model for drills with double point-angle edges. Int. J. Adv. Manuf. Technol. 2009;40:447–457. doi: 10.1007/s00170-007-1362-8. DOI
Arul S., Vijayaraghavan L., Malhotra S.K., Krishnamurthy R. Influence of tool material on dynamics of drilling of GFRP composites. Int. J. Adv. Manuf. Technol. 2006;29:655–662. doi: 10.1007/s00170-005-2581-5. DOI
Basavarajappa S., Chandramohan G., Paulo Davim J., Prabu M., Mukund K., Ashwin M., PrasannaKumar M. Drilling of hybrid aluminium matrix composites. Int. J. Adv. Manuf. Technol. 2008;35:1244–1250. doi: 10.1007/s00170-006-0804-z. DOI
Sharman A.R.C., Amarasinghe A., Ridgway K. Tool life and surface integrity aspects when drilling and hole making in Inconel 718. J. Mater. Process. Technol. 2008;200:424–432. doi: 10.1016/j.jmatprotec.2007.08.080. DOI
Jayabal S., Natarajan U., Sekar U. Regression modeling and optimization of machinabilitymbehavior of glass-coir-polyester hybrid composite using factorial design methodology. Int. J. Adv. Manuf. Technol. 2010;55:263–273. doi: 10.1007/s00170-010-3030-7. DOI
Singh A.K., Panda S.S., Pal S.K., Chakraborty D. Predicting drill wear using an artificial neural network. Int. J. Adv. Manuf. Technol. 2006;28:456–462. doi: 10.1007/s00170-004-2376-0. DOI
Oh Y.T., Kwon W.T., Chu C.N. Drilling torque control using spindle motor current and its effect on tool wear. Int. J. Adv. Manuf. Technol. 2004;24:327–334. doi: 10.1007/s00170-002-1490-0. DOI
Tsao C.C. Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. Int. J. Adv. Manuf. Technol. 2008;37:1061–1068. doi: 10.1007/s00170-007-1057-1. DOI
Lin T.R. Cutting behaviour using variable feed and variable speed when drilling stainless steel with TiN-coated carbide drills. Int. J. Adv. Manuf. Technol. 2002;19:629–636. doi: 10.1007/s001700200106. DOI
Uçak N., Çiçek A., Oezkaya E., Aslantas K. Finite element simulations of cutting force, torque, and temperature in drilling of Inconel 718. Procedia CIRP. 2019;82:47–52. doi: 10.1016/j.procir.2019.03.277. DOI
Türkes E., Erdem M., Gok K., Gok A. Development of a new model for determine of cutting parameters in metal drilling processes. J. Braz. Soc. Mech. Sci. Eng. 2020;42:16. doi: 10.1007/s40430-020-2257-y. DOI
Giasin K., Hodzic A., Phadnis V., Ayvar-Soberanis S. Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: Experimental and finite element study. Int. J. Adv. Manuf. Technol. 2016;87:2041–2061. doi: 10.1007/s00170-016-8563-y. DOI
Winer B.J. Statistical Principles in Experimental Design. McGraw-Hill Book Company; New York, NY, USA: 1962. DOI
Antosz K., Knapčíková L., Husár J. Evaluation and Application of Machine Learning Techniques for Quality Improvement in Metal Product Manufacturing. Appl. Sci. 2024;14:10450. doi: 10.3390/app142210450. DOI
Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and Regression Trees. Chapman and Hall/CRC; Monterey, CA, USA: 1984. Wadsworth and Brooks/Cole Advanced Books and Software.
Boukredera F.S., Hadjadj A., Youcefi M.R., Ouadi H. AI-Driven Optimization of Drilling Performance Through Torque Management Using Machine Learning and Differential Evolution. Processes. 2025;13:1472. doi: 10.3390/pr13051472. DOI
Li Q., Liu J., Wang S., Guo Y., Han X., Li Q., Cheng Y., Dong Z., Li X., Zhang X. Numerical insights into factors affecting collapse behavior of horizontal wellbore in clayey silt hydrate-bearing sediments and the accompanying control strategy. Ocean Eng. 2024;297:117029. doi: 10.1016/j.oceaneng.2024.117029. DOI
Akdulum A., Kayir Y. Prediction of thrust force in indexable drilling of aluminum alloys with machine learning algorithms. Measurement. 2023;222:113655. doi: 10.1016/j.measurement.2023.113655. DOI
Khedr M., Abdalkareem A., Monier A., Afify R., Mahmoud T.S., Järvenpää A. Machine learning-based prediction of bushing dimensions, surface roughness and induced temperature during friction drilling of pre-heated A356 aluminum alloy. Mater. Today Commun. 2025;45:112420. doi: 10.1016/j.mtcomm.2025.112420. DOI
Su K., Zeng Z., Guan Z., Liao Y., Wang J., Li M., Yang Z., Mao J. Research on a Detailed Drilling Condition Identification Method Based on the KOA-RF Model. Processes. 2025;13:1736. doi: 10.3390/pr13061736. DOI
Luo G., Arshad M.A., Luo G. Decision Trees for Strategic Choice of Augmenting Management Intuition with Machine Learning. Symmetry. 2025;17:976. doi: 10.3390/sym17070976. DOI
Dabiri H., Farhangi V., Moradi M.J., Zadehmohamad M., Karakouzian M. Applications of Decision Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars. Appl. Sci. 2022;12:4851. doi: 10.3390/app12104851. DOI
García E.M., Alberti M.G., Arcos Álvarez A.A. Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests. Appl. Sci. 2022;12:4565. doi: 10.3390/app12094565. DOI
Cayeux E., Daireaux B., Ambrus A., Mihai R., Carlsen L. Autonomous Decision-Making While Drilling. Energies. 2021;14:969. doi: 10.3390/en14040969. DOI