Following the Mixtures of Organic Micropollutants with In Vitro Bioassays in a Large Lowland River from Source to Sea
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40687504
PubMed Central
PMC12272280
DOI
10.1021/acsenvironau.4c00059
Knihovny.cz E-zdroje
- Klíčová slova
- bioassay, estrogenicity, mixture toxicity, neurotoxicity, oxidative stress, water quality monitoring, xenobiotic metabolism,
- Publikační typ
- časopisecké články MeSH
Human-impacted rivers often contain a complex mixture of organic micropollutants, including pesticides, pharmaceuticals and industrial compounds, along with their transformation products. Combining chemical target analysis for exposure with in vitro bioassays for effect assessment offers a holistic view of water quality. This study targeted the River Elbe in Central Europe, known for its anthropogenic pollution exposure, to obtain an inventory of micropollutant contamination during base flow and to identify hotspots of contamination. We identified tributaries as sources of chemicals activating the aryl hydrocarbon receptor quantified with the AhR-CALUX assay, including historically contaminated tributaries and a newly identified Czech tributary. Increased neurotoxicity, detected by differentiated SH-SY5Y neurons' cytotoxicity and shortened neurite length, was noted in some Czech tributaries. A hotspot for chemicals activating the oxidative stress response in the AREc32 assay was found in the middle Elbe in Germany. An increase in oxidative stress inducing chemicals was observed in the lower Elbe. While effect-based trigger values (EBT) for oxidative stress response, xenobiotic metabolism and neurotoxicity were not exceeded, estrogenicity levels surpassed the EBT in 14% of surface water samples, posing a potential threat to fish reproduction. Target analysis of 713 chemicals resulted in the quantification of 487 micropollutants, of which 133 were active in at least one bioassay. Despite this large number of bioactive quantified chemicals, the mixture effects predicted by the concentrations of the quantified bioactive chemicals and their relative effect potency explained only 0.002-1.2% of the effects observed in the surface water extracts, highlighting a significant unknown fraction in the chemical mixtures. This case study established a baseline for understanding pollution dynamics and spatial variations in the Elbe River, offering a comprehensive view of potential chemical effects in the water and guiding further water quality monitoring in European rivers.
GEOMAR Helmholtz Centre for Ocean Research Kiel Wischhofstraße 1 3 Kiel 24148 Germany
Institute of Carbon Cycles Helmholtz Centre Hereon Max Planck Straße 1 Geesthacht 21502 Germany
Zobrazit více v PubMed
Beketov M. A., Kefford B. J., Schäfer R. B., Liess M.. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. U.S.A. 2013;110(27):11039–11043. doi: 10.1073/pnas.1305618110. PubMed DOI PMC
Bhatt P., Bhandari G., Bilal M.. Occurrence, toxicity impacts and mitigation of emerging micropollutants in the aquatic environments: Recent tendencies and perspectives. J. Environ. Chem. Eng. 2022;10(3):107598. doi: 10.1016/j.jece.2022.107598. DOI
Escher, B. ; Neale, P. ; Leusch, F. . Bioanalytical Tools in Water Quality Assessment, 2nd ed.; IWA Publishing, 2021.
Neale P. A., Altenburger R., Ait-Aissa S., Brion F., Busch W., de Aragao Umbuzeiro G., Denison M. S., Du Pasquier D., Hilscherova K., Hollert H.. et al. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. Water Res. 2017;123:734–750. doi: 10.1016/j.watres.2017.07.016. PubMed DOI
Neale P. A., O’Brien J. W., Glauch L., König M., Krauss M., Mueller J. F., Tscharke B., Escher B. I.. Wastewater treatment efficacy evaluated with in vitro bioassays. Water Res. X. 2020;9:100072. doi: 10.1016/j.wroa.2020.100072. PubMed DOI PMC
Neale P. A., Feliers C., Glauch L., König M., Lecarpentier C., Schlichting R., Thibert S., Escher B. I.. Application of in vitro bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environ. Sci.: Water Res. Technol. 2020;6(9):2444–2453. doi: 10.1039/C9EW00987F. DOI
Neale P. A., Braun G., Brack W., Carmona E., Gunold R., König M., Krauss M., Liebmann L., Liess M., Link M.. et al. Assessing the mixture effects in in vitro bioassays of chemicals occurring in small agricultural streams during rain events. Environ. Sci. Technol. 2020;54(13):8280–8290. doi: 10.1021/acs.est.0c02235. PubMed DOI
Escher B. I., Ahlheim J., Böhme A., Borchardt D., Brack W., Braun G., Colbourne J. K., Dann J. P., Gessner J., Jahnke A.. et al. Mixtures of organic micropollutants exacerbated in vitro neurotoxicity of prymnesins and contributed to aquatic toxicity during a toxic algal bloom. Nat. Water. 2024;2(9):889–898. doi: 10.1038/s44221-024-00297-4. DOI
Brennan J. C., He G., Tsutsumi T., Zhao J., Wirth E., Fulton M. H., Denison M. S.. Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Enhanced Responsiveness and Improved Detection Limits. Environ. Sci. Technol. 2015;49(19):11903–11912. doi: 10.1021/acs.est.5b02906. PubMed DOI PMC
Escher B. I., Dutt M., Maylin E., Tang J. Y., Toze S., Wolf C. R., Lang M.. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway. J. Environ. Monit. 2012;14(11):2877–2885. doi: 10.1039/c2em30506b. PubMed DOI
Könemann S., Kase R., Simon E., Swart K., Buchinger S., Schlüsener M., Hollert H., Escher B. I., Werner I., Aït-Aïssa S.. et al. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. TrAC, Trends Anal. Chem. 2018;102:225–235. doi: 10.1016/j.trac.2018.02.008. DOI
Lee J., Schlichting R., König M., Scholz S., Krauss M., Escher B. I.. Monitoring Mixture Effects of Neurotoxicants in Surface Water and Wastewater Treatment Plant Effluents with Neurite Outgrowth Inhibition in SH-SY5Y Cells. ACS Environ. Au. 2022;2(6):523–535. doi: 10.1021/acsenvironau.2c00026. PubMed DOI PMC
Sanders T., Schöl A., Dähnke K.. Hot Spots of Nitrification in the Elbe Estuary and Their Impact on Nitrate Regeneration. Estuaries Coasts. 2018;41(1):128–138. doi: 10.1007/s12237-017-0264-8. DOI
Bussmann, I. K. ; Brix, H. ; Fischer, P. ; Kamjunke, N. ; Krauss, M. ; Raupers, B. ; Sanders, T. . The MOSES Sternfahrt Expeditions of the Research Vessels ALBIS, LITTORINA, LUDWIG PRANDTL and MYA II to the Elbe River, Elbe Estuary and German Bight in 2023 Berichte zur Polar-und Meeresforschung (Reports on polar and marine research) 2024; Vol. 786, pp 1–65 10.57738/BzPM_0786_2024. DOI
Maurer L., Carmona E., Machate O., Schulze T., Krauss M., Brack W.. Contamination Pattern and Risk Assessment of Polar Compounds in Snow Melt: An Integrative Proxy of Road Runoffs. Environ. Sci. Technol. 2023;57(10):4143–4152. doi: 10.1021/acs.est.2c05784. PubMed DOI PMC
Finckh S., Carmona E., Borchardt D., Büttner O., Krauss M., Schulze T., Yang S., Brack W.. Mapping chemical footprints of organic micropollutants in European streams. Environ. Int. 2024;183:108371. doi: 10.1016/j.envint.2023.108371. PubMed DOI
Pluskal T., Castillo S., Villar-Briones A., Orešič M.. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC
Schulze, T. ; Mueller, E. ; Krauss, M. . MZquant: Workflow for blank tagging and quantification of MZmine output files 2021. https://git.ufz.de/wana_public/mzquant. (accessed April 20, 2024).
Neale P. A., Brack W., Aït-Aïssa S., Busch W., Hollender J., Krauss M., Maillot-Maréchal E., Munz N. A., Schlichting R., Schulze T.. et al. Solid-phase extraction as sample preparation of water samples for cell-based and otherin vitrobioassays. Environ. Sci.:Processes Impacts. 2018;20(3):493–504. doi: 10.1039/C7EM00555E. PubMed DOI
ThermoFisher . User Guide: GeneBLAzer ER-alpha UAS-bla GripTiteTM cell-based assay. https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fgeneblazer_ERalphaUASblaGripTite_man.pdf. (accessed July 25, 2024).
Wang X. J., Hayes J. D., Wolf C. R.. Generation of a Stable Antioxidant Response Element–Driven Reporter Gene Cell Line and Its Use to Show Redox-Dependent Activation of Nrf2 by Cancer Chemotherapeutic Agents. Cancer Res. 2006;66(22):10983–10994. doi: 10.1158/0008-5472.CAN-06-2298. PubMed DOI
König M., Escher B. I., Neale P. A., Krauss M., Hilscherová K., Novák J., Teodorović I., Schulze T., Seidensticker S., Hashmi M. K. A.. et al. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environ. Pollut. 2017;220:1220–1230. doi: 10.1016/j.envpol.2016.11.011. PubMed DOI
Lee J., Escher B. I., Scholz S., Schlichting R.. Inhibition of neurite outgrowth and enhanced effects compared to baseline toxicity in SH-SY5Y cells. Arch. Toxicol. 2022;96(4):1039–1053. doi: 10.1007/s00204-022-03237-x. PubMed DOI PMC
Judson R., Houck K., Martin M., Richard A. M., Knudsen T. B., Shah I., Little S., Wambaugh J., Setzer R. W., Kothya P.. et al. Editor’s Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity onIn VitroAssay Activity Across a Diverse Chemical and Assay Space. Toxicol. Sci. 2016;152(2):323–339. doi: 10.1093/toxsci/kfw092. PubMed DOI PMC
Escher B. I., Neale P. A., Villeneuve D. L.. The advantages of linear concentration–response curves for in vitro bioassays with environmental samples. Environ. Toxicol. Chem. 2018;37(9):2273–2280. doi: 10.1002/etc.4178. PubMed DOI PMC
Filer D. L., Kothiya P., Setzer R. W., Judson R. S., Martin M. T.. tcpl: the ToxCast pipeline for high-throughput screening data. Bioinformatics. 2017;33(4):618–620. doi: 10.1093/bioinformatics/btw680. PubMed DOI
Tang J. Y. M., Aryal R., Deletic A., Gernjak W., Glenn E., McCarthy D., Escher B. I.. Toxicity characterization of urban stormwater with bioanalytical tools. Water Res. 2013;47(15):5594–5606. doi: 10.1016/j.watres.2013.06.037. PubMed DOI
Tang J. Y. M., Escher B. I.. Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: Herbicides dominate the mixture toxicity toward algae. Environ. Toxicol. Chem. 2014;33(6):1427–1436. doi: 10.1002/etc.2580. PubMed DOI
Escher B. I., van Daele C., Dutt M., Tang J. Y. M., Altenburger R.. Most Oxidative Stress Response In Water Samples Comes From Unknown Chemicals: The Need For Effect-Based Water Quality Trigger Values. Environ. Sci. Technol. 2013;47(13):7002–7011. doi: 10.1021/es304793h. PubMed DOI
Belden J. B., Gilliom R. J., Lydy M. J.. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. Manage. 2007;3(3):364–372. doi: 10.1002/ieam.5630030307. PubMed DOI
Lee J., König M., Braun G., Escher B. I.. Water Quality Monitoring with the Multiplexed Assay MitoOxTox for Mitochondrial Toxicity, Oxidative Stress Response, and Cytotoxicity in AREc32 Cells. Environ. Sci. Technol. 2024;58(13):5716–5726. doi: 10.1021/acs.est.3c09844. PubMed DOI PMC
Escher B. I., Aït-Aïssa S., Behnisch P. A., Brack W., Brion F., Brouwer A., Buchinger S., Crawford S. E., Du Pasquier D., Hamers T.. et al. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Sci. Total Environ. 2018;628–629:748–765. doi: 10.1016/j.scitotenv.2018.01.340. PubMed DOI
Escher B. I., Neale P. A.. Effect-Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays. Environ. Toxicol. Chem. 2020;40(2):487–499. doi: 10.1002/etc.4944. PubMed DOI
Fay K. A., Villeneuve D. L., Swintek J., Edwards S. W., Nelms M. D., Blackwell B. R., Ankley G. T.. Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development. Toxicol. Sci. 2018;163(2):500–515. doi: 10.1093/toxsci/kfy049. PubMed DOI PMC
Escher B. I., Henneberger L., König M., Schlichting R., Fischer F. C.. Cytotoxicity burst or baseline toxicity? Differentiating specific from nonspecific effects in reporter gene assays. Environ. Health Perspect. 2020;128(7):077007. doi: 10.1289/EHP6664. PubMed DOI PMC
Kamjunke N., Beckers L.-M., Herzsprung P., von Tümpling W., Lechtenfeld O., Tittel J., Risse-Buhl U., Rode M., Wachholz A., Kallies R.. et al. Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought. Sci. Total Environ. 2022;828:154243. doi: 10.1016/j.scitotenv.2022.154243. PubMed DOI
Barrow K., Escher B. I., Hicks K. A., König M., Schlichting R., Arlos M. J.. Water quality monitoring with in vitro bioassays to compare untreated oil sands process-affected water with unimpacted rivers. Environ. Sci.:Water Res. Technol. 2023;9(8):2008–2020. doi: 10.1039/D2EW00988A. DOI
Caracciolo R., Escher B. I., Lai F. Y., Nguyen T. A., Le T. M. T., Schlichting R., Tröger R., Némery J., Wiberg K., Nguyen P. D., Baduel C.. Impact of a megacity on the water quality of a tropical estuary assessed by a combination of chemical analysis and in-vitro bioassays. Sci. Total Environ. 2023;877:162525. doi: 10.1016/j.scitotenv.2023.162525. PubMed DOI
Kurth D., Lips S., Massei R., Krauss M., Luckenbach T., Schulze T., Brack W.. The impact of chemosensitisation on bioaccumulation and sediment toxicity. Chemosphere. 2017;186:652–659. doi: 10.1016/j.chemosphere.2017.08.019. PubMed DOI
Sobeck, E. Water Quality Control Policy for Recycled Water 2019. https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2018/121118_7_final_amendment_oal.pdf. (accessed March 5, 2024).
Neale P. A., Escher B. I., de Baat M. L., Enault J., Leusch F. D. L.. Effect-Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in Water Safety Planning. Environ. Toxicol. Chem. 2023;42(3):714–726. doi: 10.1002/etc.5544. PubMed DOI
Kidd K. A., Blanchfield P. J., Mills K. H., Palace V. P., Evans R. E., Lazorchak J. M., Flick R. W.. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. U.S.A. 2007;104(21):8897–8901. doi: 10.1073/pnas.0609568104. PubMed DOI PMC
Hecker M., Tyler C. R., Hoffmann M., Maddix S., Karbe L.. Plasma biomarkers in fish provide evidence for endocrine modulation in the Elbe River, Germany. Environ. Sci. Technol. 2002;36(11):2311–2321. doi: 10.1021/es010186h. PubMed DOI
Hecker M., Karbe L.. Parasitism in fishan endocrine modulator of ecological relevance? Aquat. Toxicol. 2005;72(3):195–207. doi: 10.1016/j.aquatox.2004.12.008. PubMed DOI
Muschket M., Di Paolo C., Tindall A. J., Touak G., Phan A., Krauss M., Kirchner K., Seiler T.-B., Hollert H., Brack W.. Identification of Unknown Antiandrogenic Compounds in Surface Waters by Effect-Directed Analysis (EDA) Using a Parallel Fractionation Approach. Environ. Sci. Technol. 2018;52(1):288–297. doi: 10.1021/acs.est.7b04994. PubMed DOI
Schwartz, R. PCB in der Elbe: Eigenschaften, Vorkommen und Trends: sowie Ursachen und Folgen der erhöhten Freisetzung im Jahr 2015. 2016. https://epub.sub.uni-hamburg.de/epub/volltexte/2017/70555/pdf/ELSA_PCB_Bericht_72016.pdf. (accessed 72024/70509/70524).
IKSE. . Sedimentmanagementkonzept der IKSE: Vorschläge für eine gute Sedimentmanagementpraxis im Elbegebiet zur Erreichung überregionaler Handlungsziele; Abschlussbericht Ad-hoc-Expertengruppe″ Sedimentmanagement″. 2014. https://elsa-elbe.de/assets/pdf/Sedimentmanagementkonzept_IKSE.pdf. (accessed September 9, 2024).
Arturi K., Hollender J.. Machine Learning-Based Hazard-Driven Prioritization of Features in Nontarget Screening of Environmental High-Resolution Mass Spectrometry Data. Environ. Sci. Technol. 2023;57:18067–18079. doi: 10.1021/acs.est.3c00304. PubMed DOI PMC
Finckh S., Buchinger S., Escher B. I., Hollert H., König M., Krauss M., Leekitratanapisan W., Schiwy S., Schlichting R., Shuliakevich A., Brack W.. Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. Environ. Int. 2022;170:107608. doi: 10.1016/j.envint.2022.107608. PubMed DOI PMC
Escher B. I., Braun G., Zarfl C.. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model. Environ. Toxicol. Chem. 2020;39(12):2552–2559. doi: 10.1002/etc.4868. PubMed DOI
Brack W., Ait-Aissa S., Burgess R. M., Busch W., Creusot N., Di Paolo C., Escher B. I., Hewitt L. M., Hilscherova K., Hollender J.. et al. Effect-directed analysis supporting monitoring of aquatic environmentsan in-depth overview. Sci. Total Environ. 2016;544:1073–1118. doi: 10.1016/j.scitotenv.2015.11.102. PubMed DOI