Mapping Small Extracellular Vesicle Secretion Potential in Healthy Human Gingiva Using Spatial Transcriptomics

. 2025 Apr 07 ; 47 (4) : . [epub] 20250407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40699655

Grantová podpora
DI2018009448 Polish Ministry of Science and Higher Education

Regenerative processes occur at various levels in all organisms, yet their complexity continues to raise new questions about their mechanisms. It has been demonstrated that small extracellular vesicles (sEVs), secreted by all cells and influencing their function, play a significant role in regeneration. In the context of regenerative processes, oral mucosal tissues consistently receive interest, as they are among the most rapidly healing tissues in the human body. In this study, we utilized spatial transcriptomics to map gene expression to specific spatial locations within the gingiva tissue section, using publicly available transcriptomic data. This analysis revealed new insights into this tissue and the biogenesis of sEVs within it. The identified clusters encompassed two main regions-the epithelium and lamina propria-as well as minor niches within them. Using Gene Ontology (GO) analysis, we identified two clusters most enriched in extracellular vesicle-related GO processes. These included the superficial and deeper layers of the sulcular epithelium, one of the most peripheral regions of the gingiva. Of the 43 genes identified in the literature as having a potential or documented role in sEVs biogenesis, 12 were selected for further analysis. MUC1, SDCBP2, and VPS37B showed clear specificity and the highest expression in the superficial layer of the sulcular epithelium. CHMP4C also exhibited high expression in this layer, though its levels were comparable to the outer layer of the oral epithelium. Other well-established sEVs marker genes, such as ANXA2, CD9, CD63, CD81, FLOT1, RAB22A, RAB27B, and RAB5A, were also expressed in the examined tissue; however, their expression was not specifically exclusive to the sulcular epithelium. Our study is the first to perform a meta-analysis of available gingival transcriptomic data in the specific context of sEVs biogenesis. The presented data and conclusions provide new insights into the role of different structures within healthy human gingiva and shed new light on both known and potential markers of sEVs biogenesis. These findings may contribute to the development of regeneration-targeted research, especially on oral tissues.

Zobrazit více v PubMed

Prabhu S.R. Textbook of General Pathology for Dental Students. Springer Nature; Berlin/Heidelberg, Germany: 2023. Healing: Tissue Regeneration and Repair; pp. 49–56. DOI

Poss K.D., Tanaka E.M. Hallmarks of Regeneration. Cell Stem Cell. 2024;31:1244–1261. doi: 10.1016/J.STEM.2024.07.007. PubMed DOI PMC

Yun M.H. Changes in Regenerative Capacity through Lifespan. Int. J. Mol. Sci. 2015;16:25392–25432. doi: 10.3390/ijms161025392. PubMed DOI PMC

Giancotti A., Monti M., Nevi L., Safarikia S., D’Ambrosio V., Brunelli R., Pajno C., Corno S., Di Donato V., Musella A., et al. Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells. 2019;8:914. doi: 10.3390/cells8080914. PubMed DOI PMC

Glim J.E., Everts V., Niessen F.B., Ulrich M.M., Beelen R.H.J. Extracellular Matrix Components of Oral Mucosa Differ from Skin and Resemble That of Foetal Skin. Arch. Oral Biol. 2014;59:1048–1055. doi: 10.1016/J.ARCHORALBIO.2014.05.019. PubMed DOI

Boushell L.W., Sturdevant J.R. Sturdevant’s Art and Science of Operative Dentistry. Elsevier; Amsterdam, The Netherlands: 2019. Clinical Significance of Dental Anatomy, Histology, Physiology, and Occlusion; pp. 1–39. DOI

Griffin M.F., Fahy E.J., King M., Guardino N., Chen K., Abbas D.B., Lavin C.V., Diaz Deleon N.M., Lorenz H.P., Longaker M.T., et al. Understanding Scarring in the Oral Mucosa. Adv. Wound Care. 2022;11:537. doi: 10.1089/wound.2021.0038. PubMed DOI PMC

Waasdorp M., Krom B.P., Bikker F.J., van Zuijlen P.P.M., Niessen F.B., Gibbs S. The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules. 2021;11:1165. doi: 10.3390/biom11081165. PubMed DOI PMC

Maier T. Oral Microbiome in Health and Disease: Maintaining a Healthy, Balanced Ecosystem and Reversing Dysbiosis. Microorganisms. 2023;11:1453. doi: 10.3390/microorganisms11061453. PubMed DOI PMC

Page R.C., Schroeder H.E. Pathogenesis of Inflammatory Periodontal Disease. A Summary of Current Work. Lab. Investig. 1976;34:235–249. PubMed

Kinane D.F. Causation and Pathogenesis of Periodontal Disease. Periodontology. 2001;25:8–20. doi: 10.1034/J.1600-0757.2001.22250102.X. PubMed DOI

Kinane Denis F., Lindhe J. Pathogenesis of Periodontitis. 3rd ed. Blackwell Science Inc.; Copenhagen, Denmark: 1997.

Welsh J.A., Goberdhan D.C.I., O’Driscoll L., Buzas E.I., Blenkiron C., Bussolati B., Cai H., Di Vizio D., Driedonks T.A.P., Erdbrügger U., et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles. 2024;13:e12404. doi: 10.1002/JEV2.12404. PubMed DOI PMC

Petrovčíková E., Vičíková K., Leksa V. Extracellular Vesicles—Biogenesis, Composition, Function, Uptake and Therapeutic Applications. Biologia. 2018;73:437–448. doi: 10.2478/s11756-018-0047-0. DOI

de Jong O.G., van Balkom B.W.M., Schiffelers R.M., Bouten C.V.C., Verhaar M.C. Extracellular Vesicles: Potential Roles in Regenerative Medicine. Front. Immunol. 2014;5:608. doi: 10.3389/fimmu.2014.00608. PubMed DOI PMC

Lee J.Y., Kim H.S. Extracellular Vesicles in Regenerative Medicine: Potentials and Challenges. Tissue Eng. Regen. Med. 2021;18:479–484. doi: 10.1007/s13770-021-00365-w. PubMed DOI PMC

Pawlaczyk-Kamienska T., Torlinska-Walkowiak N., Borysewicz-Lewicka M. The Relationship between Oral Hygiene Level and Gingivitis in Children. Adv. Clin. Exp. Med. 2018;27:1397–1401. doi: 10.17219/acem/70417. PubMed DOI

Litonjua L.A., Andreana S., Bush P.J., Cohen R.E. Toothbrushing and Gingival Recession. Int. Dent. J. 2003;53:67–72. doi: 10.1111/j.1875-595X.2003.tb00661.x. PubMed DOI

Wang R., Ji Q., Meng C., Liu H., Fan C., Lipkind S., Wang Z., Xu Q. Role of Gingival Mesenchymal Stem Cell Exosomes in Macrophage Polarization under Inflammatory Conditions. Int. Immunopharmacol. 2020;81:106030. doi: 10.1016/j.intimp.2019.106030. PubMed DOI

Nakao Y., Fukuda T., Zhang Q., Sanui T., Shinjo T., Kou X., Chen C., Liu D., Watanabe Y., Hayashi C., et al. Exosomes from TNF-α-Treated Human Gingiva-Derived MSCs Enhance M2 Macrophage Polarization and Inhibit Periodontal Bone Loss. Acta Biomater. 2021;122:306. doi: 10.1016/j.actbio.2020.12.046. PubMed DOI PMC

Williams C.G., Lee H.J., Asatsuma T., Vento-Tormo R., Haque A. An Introduction to Spatial Transcriptomics for Biomedical Research. Genome Med. 2022;14:68. doi: 10.1186/s13073-022-01075-1. PubMed DOI PMC

Ortiz C., Carlén M., Meletis K. Spatial Transcriptomics: Molecular Maps of the Mammalian Brain. Annu. Rev. Neurosci. 2021;44:547–562. doi: 10.1146/annurev-neuro-100520-082639. PubMed DOI

Maynard K.R., Collado-Torres L., Weber L.M., Uytingco C., Barry B.K., Williams S.R., Catallini J.L., Tran M.N., Besich Z., Tippani M., et al. Transcriptome-Scale Spatial Gene Expression in the Human Dorsolateral Prefrontal Cortex. Nat. Neurosci. 2021;24:425–436. doi: 10.1038/s41593-020-00787-0. PubMed DOI PMC

Caetano A.J., Redhead Y., Karim F., Dhami P., Kannambath S., Nuamah R., Volponi A.A., Nibali L., Booth V., D’agostino E.M., et al. Spatially Resolved Transcriptomics Reveals Pro-Inflammatory Fibroblast Involved in Lymphocyte Recruitment through CXCL8 and CXCL10. eLife. 2023;12:e81525. doi: 10.7554/eLife.81525. PubMed DOI PMC

Hao Y., Stuart T., Kowalski M.H., Choudhary S., Hoffman P., Hartman A., Srivastava A., Molla G., Madad S., Fernandez-Granda C., et al. Dictionary Learning for Integrative, Multimodal and Scalable Single-Cell Analysis. Nat. Biotechnol. 2024;42:293–304. doi: 10.1038/s41587-023-01767-y. PubMed DOI PMC

Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. Integrated Analysis of Multimodal Single-Cell Data. Cell. 2021;184:3573. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC

Blatkiewicz M., Hryhorowicz S., Szyszka M., Suszyńska-Zajczyk J., Pławski A., Plewiński A., Porzionato A., Malendowicz L.K., Rucinski M. Molecular Landscape of the Mouse Adrenal Gland and Adjacent Adipose by Spatial Transcriptomics. bioRxiv. 2025:1–21. doi: 10.1101/2025.01.02.631086. DOI

Wickham H. Ggplot2. Springer Nature; Berlin/Heidelberg, Germany: 2016. DOI

Pedersen T.L. Patchwork: The Composer of Plots. CRAN: Contributed Packages. 2019. [(accessed on 2 February 2025)]. Available online: https://patchwork.data-imaginist.com/

Schauberger P., Walker A., Braglia L. Openxlsx: Read, Write and Edit Xlsx Files. R Foundation for Statistical Computing; Vienna, Austria: 2020. version 4.

Bates D., Maechler M., Jagan M. Matrix: Sparse and Dense Matrix Classes and Methods. R Foundation for Statistical Computing; Vienna, Austria: 2010. [(accessed on 2 February 2025)]. version 0.999375-43. Available online: http://cran.r-project.org/package=Matrix.

Bengtsson H. Various Programming Utilities [R Package R. Utils Version 2.13.0] 2025. [(accessed on 2 February 2025)]. Available online: https://cran.r-project.org/web/packages/R.utils/index.html.

R Core Team R: A Language and Environment for Statistical Computing|BibSonomy R Foundation for Statistical Computing 2022. [(accessed on 2 February 2025)]. Available online: https://www.r-project.org/foundation/

Brizuela M., Winters R. StatPearls. StatPearls Publishing; St. Petersburg, FL, USA: 2023. Histology, Oral Mucosa. PubMed

Ayansola H., Mayorga E.J., Jin Y. Subepithelial Stromal Cells: Their Roles and Interactions with Intestinal Epithelial Cells during Gut Mucosal Homeostasis and Regeneration. Biomedicines. 2024;12:668. doi: 10.3390/biomedicines12030668. PubMed DOI PMC

Ferreira B., Ferreira C., Martins C., Nunes R., das Neves J., Leite-Pereira C., Sarmento B. Establishment of a 3D Multi-Layered in Vitro Model of Inflammatory Bowel Disease. J. Control. Release. 2025;377:675–688. doi: 10.1016/j.jconrel.2024.11.070. PubMed DOI

Jacobi A., Loy K., Schmalz A.M., Hellsten M., Umemori H., Kerschensteiner M., Bareyre F.M. FGF 22 Signaling Regulates Synapse Formation during Post-injury Remodeling of the Spinal Cord. EMBO J. 2015;34:1231–1243. doi: 10.15252/embj.201490578. PubMed DOI PMC

Shikani A.H., Sidhaye V.K., Basaraba R.J., Shikani H.J., Alqudah M.A., Kirk N., Cope E., Leid J.G. Mucosal Expression of Aquaporin 5 and Epithelial Barrier Proteins in Chronic Rhinosinusitis with and without Nasal Polyps. Am. J. Otolaryngol. 2013;35:377. doi: 10.1016/j.amjoto.2013.11.011. PubMed DOI PMC

Grasberger H., Gao J., Nagao-Kitamoto H., Kitamoto S., Zhang M., Kamada N., Eaton K.A., El-Zaatari M., Shreiner A.B., Merchant J.L., et al. Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine. Gastroenterology. 2015;149:1849. doi: 10.1053/j.gastro.2015.07.062. PubMed DOI PMC

Fan R., Han X., Gong Y., He L., Xue Z., Yang Y., Sun L., Fan D., You Y., Meng F., et al. Alterations of Fucosyltransferase Genes and Fucosylated Glycans in Gastric Epithelial Cells Infected with Helicobacter Pylori. Pathogens. 2021;10:168. doi: 10.3390/pathogens10020168. PubMed DOI PMC

Cai Y., Ling Y., Huang L., Huang H., Chen X., Xiao Y., Zhu Z., Chen J. C-C Motif Chemokine 14 as a Novel Potential Biomarker for Predicting the Prognosis of Epithelial Ovarian Cancer. Oncol. Lett. 2020;19:2875. doi: 10.3892/OL.2020.11378. PubMed DOI PMC

Vandooren J., Itoh Y. Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Front. Immunol. 2021;12:803244. doi: 10.3389/fimmu.2021.803244. PubMed DOI PMC

Garg M., Braunstein G., Koeffler H.P. LAMC2 as a Therapeutic Target for Cancers. Expert. Opin. Ther. Targets. 2014;18:979–982. doi: 10.1517/14728222.2014.934814. PubMed DOI

Jeon S.M., Shin E.A. Exploring Vitamin D Metabolism and Function in Cancer. Exp. Mol. Med. 2018;50:1–14. doi: 10.1038/s12276-018-0038-9. PubMed DOI PMC

Bergmeier L.A., Dutzan N., Smith P.C., Kraan H. Editorial: Immunology of the Oral Mucosa. Front. Immunol. 2022;13:877209. doi: 10.3389/fimmu.2022.877209. PubMed DOI PMC

Flach H., Rosenbaum M., Duchniewicz M., Kim S., Zhang S.L., Cahalan M.D., Mittler G., Grosschedl R. Mzb1 Protein Regulates Calcium Homeostasis, Antibody Secretion, and Integrin Activation in Innate-like B Cells. Immunity. 2010;33:723. doi: 10.1016/j.immuni.2010.11.013. PubMed DOI PMC

Valapala M., Vishwanatha J.K. Lipid Raft Endocytosis and Exosomal Transport Facilitate Extracellular Trafficking of Annexin A2. J. Biol. Chem. 2011;286:30911. doi: 10.1074/jbc.M111.271155. PubMed DOI PMC

Maeda K., Goto S., Miura K., Saito K., Morita E. The Incorporation of Extracellular Vesicle Markers Varies among Vesicles with Distinct Surface Charges. J. Biochem. 2024;175:299–312. doi: 10.1093/jb/mvad097. PubMed DOI

Honegger A., Leitz J., Bulkescher J., Hoppe-Seyler K., Hoppe-Seyler F. Silencing of Human Papillomavirus (HPV) E6/E7 Oncogene Expression Affects Both the Contents and the Amounts of Extracellular Microvesicles Released from HPV-Positive Cancer Cells. Int. J. Cancer. 2013;133:1631–1642. doi: 10.1002/IJC.28164. PubMed DOI

Morimoto Y., Yamashita N., Daimon T., Hirose H., Yamano S., Haratake N., Ishikawa S., Bhattacharya A., Fushimi A., Ahmad R., et al. MUC1-C Is a Master Regulator of MICA/B NKG2D Ligand and Exosome Secretion in Human Cancer Cells. J. Immunother. Cancer. 2023;11:e006238. doi: 10.1136/JITC-2022-006238. PubMed DOI PMC

Gorji-bahri G., Moghimi H.R., Hashemi A. RAB5A Is Associated with Genes Involved in Exosome Secretion: Integration of Bioinformatics Analysis and Experimental Validation. J. Cell. Biochem. 2021;122:425–441. doi: 10.1002/JCB.29871. PubMed DOI

Fan B., Wang L., Wang J. RAB22A as a Predictor of Exosome Secretion in the Progression and Relapse of Multiple Myeloma. Aging. 2024;16:4169. doi: 10.18632/AGING.205565. PubMed DOI PMC

Ostrowski M., Carmo N.B., Krumeich S., Fanget I., Raposo G., Savina A., Moita C.F., Schauer K., Hume A.N., Freitas R.P., et al. Rab27a and Rab27b Control Different Steps of the Exosome Secretion Pathway. Nat. Cell Biol. 2010;12:19–30. doi: 10.1038/ncb2000. PubMed DOI

Das S.K., Sarkar D., Emdad L., Fisher P.B. MDA-9/Syntenin: An Emerging Global Molecular Target Regulating Cancer Invasion and Metastasis. Adv. Cancer Res. 2019;144:137–191. doi: 10.1016/BS.ACR.2019.03.011. PubMed DOI

Guzewska M.M., Myszczynski K., Heifetz Y., Kaczmarek M.M. Embryonic Signals Mediate Extracellular Vesicle Biogenesis and Trafficking at the Embryo–Maternal Interface. Cell Commun. Signal. 2023;21:210. doi: 10.1186/s12964-023-01221-1. PubMed DOI PMC

Liu Z., Zhang Z., Zhang Y., Zhou W., Zhang X., Peng C., Ji T., Zou X., Zhang Z., Ren Z. Spatial Transcriptomics Reveals That Metabolic Characteristics Define the Tumor Immunosuppression Microenvironment via ICAF Transformation in Oral Squamous Cell Carcinoma. Int. J. Oral Sci. 2024;16:9. doi: 10.1038/s41368-023-00267-8. PubMed DOI PMC

Seubert A.C., Krafft M., Bopp S., Helal M., Bhandare P., Wolf E., Alemany A., Riedel A., Kretzschmar K. Spatial Transcriptomics Reveals Molecular Cues Underlying the Site Specificity of the Adult Mouse Oral Mucosa and Its Stem Cell Niches. Stem Cell Rep. 2024;19:1706–1719. doi: 10.1016/J.STEMCR.2024.10.007. PubMed DOI PMC

Caetano A.J., Redhead Y., Karim F., Dhami P., Kannambath S., Nuamah R., Volponi A.A., Nibali L., Booth V., D’Agostino E.M., et al. Mapping the Spatial Dynamics of the Human Oral Mucosa in Chronic Inflammatory Disease. bioRxiv. 2022;27 doi: 10.1101/2022.07.05.498778. DOI

Jaber Y., Sarusi-Portuguez A., Netanely Y., Naamneh R., Yacoub S., Saar O., Drawshave N., Eli-Berchoer L., Shapiro H., Elinav E., et al. Gingival Spatial Analysis Reveals Geographic Immunological Variation in a Microbiota-Dependent and -Independent Manner. npj Biofilms Microbiomes. 2024;10:142. doi: 10.1038/s41522-024-00625-2. PubMed DOI PMC

Santacroce L., Passarelli P.C., Azzolino D., Bottalico L., Charitos I.A., Cazzolla A.P., Colella M., Topi S., Godoy F.G., D’Addona A. Oral Microbiota in Human Health and Disease: A Perspective. Exp. Biol. Med. 2023;248:1288. doi: 10.1177/15353702231187645. PubMed DOI PMC

Bhandari A., Bhatta N. Tobacco and Its Relationship with Oral Health. JNMA J. Nepal Med. Assoc. 2021;59:1204. doi: 10.31729/JNMA.6605. PubMed DOI PMC

Santonocito S., Giudice A., Polizzi A., Troiano G., Merlo E.M., Sclafani R., Grosso G., Isola G. A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System’s Response during Periodontitis. Nutrients. 2022;14:2426. doi: 10.3390/nu14122426. PubMed DOI PMC

Deo P.N., Deshmukh R. Oral Microbiome: Unveiling the Fundamentals. J. Oral. Maxillofac. Pathol. 2019;23:122. doi: 10.4103/JOMFP.JOMFP_304_18. PubMed DOI PMC

Kilian M., Chapple I.L.C., Hannig M., Marsh P.D., Meuric V., Pedersen A.M.L., Tonetti M.S., Wade W.G., Zaura E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016;221:657–666. doi: 10.1038/sj.bdj.2016.865. PubMed DOI

Rouabhia M. Interactions between Host and Oral Commensal Microorganisms Are Key Events in Health and Disease Status. Can. J. Infect. Dis. 2002;13:47. doi: 10.1155/2002/580476. PubMed DOI PMC

Ji S., Choi Y. Microbial and Host Factors That Affect Bacterial Invasion of the Gingiva. J. Dent. Res. 2020;99:1013–1020. doi: 10.1177/0022034520922134. PubMed DOI

Nakamura M. Histological and Immunological Characteristics of the Junctional Epithelium. Jpn. Dent. Sci. Rev. 2017;54:59. doi: 10.1016/J.JDSR.2017.11.004. PubMed DOI PMC

Dabija-Wolter G., Bakken V., Cimpan M.R., Johannessen A.C., Costea D.E. In Vitro Reconstruction of Human Junctional and Sulcular Epithelium. J. Oral Pathol. Med. 2012;42:396. doi: 10.1111/JOP.12005. PubMed DOI PMC

Sender R., Milo R. The Distribution of Cellular Turnover in the Human Body. Nat. Med. 2021;27:45–48. doi: 10.1038/S41591-020-01182-9. PubMed DOI

Vitkov L., Hannig M., Krautgartner W.D., Fuchs K. Bacterial Adhesion to Sulcular Epithelium in Periodontitis. FEMS Microbiol. Lett. 2002;211:239–246. doi: 10.1111/j.1574-6968.2002.tb11231.x. PubMed DOI

Kho H.S. Oral Epithelial MUC1 and Oral Health. Oral Dis. 2018;24:19–21. doi: 10.1111/ODI.12713. PubMed DOI

Chen W., Zhang Z., Zhang S., Zhu P., Ko J.K.S., Yung K.K.L. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int. J. Mol. Sci. 2021;22:6567. doi: 10.3390/ijms22126567. PubMed DOI PMC

Kashyap B., Kullaa A.M. Regulation of Mucin 1 Expression and Its Relationship with Oral Diseases. Arch. Oral Biol. 2020;117:104791. doi: 10.1016/J.ARCHORALBIO.2020.104791. PubMed DOI

Derrien M., van Passel M.W.J., van de Bovenkamp J.H.B., Schipper R.G., de Vos W.M., Dekker J. Mucin-Bacterial Interactions in the Human Oral Cavity and Digestive Tract. Gut Microbes. 2010;1:254. doi: 10.4161/gmic.1.4.12778. PubMed DOI PMC

Brockhausen I., Falconer D., Sara S. Relationships between Bacteria and the Mucus Layer. Carbohydr. Res. 2024;546:109309. doi: 10.1016/j.carres.2024.109309. PubMed DOI

Li X., Wubbolts R.W., Bleumink-Pluym N.M.C., van Putten J.P.M., Strijbis K. The Transmembrane Mucin Muc1 Facilitates B1-Integrin-Mediated Bacterial Invasion. mBio. 2021;12:e03491-20. doi: 10.1128/mBio.03491-20. PubMed DOI PMC

Li X., Wang L., Nunes D.P., Troxler R.F., Offner G.D. Pro-Inflammatory Cytokines up-Regulate MUC1 Gene Expression in Oral Epithelial Cells. J. Dent. Res. 2003;82:883–887. doi: 10.1177/154405910308201107. PubMed DOI

Dhar P., McAuley J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front. Cell. Infect. Microbiol. 2019;9:452801. doi: 10.3389/fcimb.2019.00117. PubMed DOI PMC

Du Y., Li L.L., Chen F. Targeting SDCBP2 in Acute Myeloid Leukemia. Cell Signal. 2023;112:110889. doi: 10.1016/j.cellsig.2023.110889. PubMed DOI

Majer O., Liu B., Kreuk L.S.M., Krogan N., Barton G.M. UNC93B1 Recruits Syntenin-1 to Dampen TLR7 Signalling and Prevent Autoimmunity. Nature. 2019;575:366–370. doi: 10.1038/S41586-019-1612-6. PubMed DOI PMC

Lee K.M., Seo E.C., Lee J.H., Kim H.J., Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int. J. Mol. Sci. 2023;24:9418. doi: 10.3390/ijms24119418. PubMed DOI PMC

Addi C., Presle A., Frémont S., Cuvelier F., Rocancourt M., Milin F., Schmutz S., Chamot-Rooke J., Douché T., Duchateau M., et al. The Flemmingsome Reveals an ESCRT-to-Membrane Coupling via ALIX/Syntenin/Syndecan-4 Required for Completion of Cytokinesis. Nat. Commun. 2020;11:1941. doi: 10.1038/S41467-020-15205-Z. PubMed DOI PMC

Kim O., Hwangbo C., Tran P.T., Lee J.H. Syntenin-1-Mediated Small Extracellular Vesicles Promotes Cell Growth, Migration, and Angiogenesis by Increasing Onco-MiRNAs Secretion in Lung Cancer Cells. Cell Death Dis. 2022;13:122. doi: 10.1038/s41419-022-04594-2. PubMed DOI PMC

Kashyap R., Balzano M., Lechat B., Lambaerts K., Egea-Jimenez A.L., Lembo F., Fares J., Meeussen S., Kügler S., Roebroek A., et al. Syntenin-Knock out Reduces Exosome Turnover and Viral Transduction. Sci. Rep. 2021;11:4083. doi: 10.1038/s41598-021-81697-4. PubMed DOI PMC

Ju Y., Bai H., Ren L., Zhang L. The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. Int. J. Mol. Sci. 2021;22:9060. doi: 10.3390/ijms22169060. PubMed DOI PMC

Lin S.L., Wang M., Cao Q.Q., Li Q. Chromatin Modified Protein 4C (CHMP4C) Facilitates the Malignant Development of Cervical Cancer Cells. FEBS Open Bio. 2020;10:1295–1303. doi: 10.1002/2211-5463.12880. PubMed DOI PMC

Yu L., Guo Q., Li Y., Mao M., Liu Z., Li T., Wang L., Zhang X. CHMP4C Promotes Pancreatic Cancer Progression by Inhibiting Necroptosis via the RIPK1/RIPK3/MLKL Pathway. J. Adv. Res. 2025 doi: 10.1016/j.jare.2025.01.040. in press. PubMed DOI

Moulin C., Crupi M.J.F., Ilkow C.S., Bell J.C., Boulton S. Extracellular Vesicles and Viruses: Two Intertwined Entities. Int. J. Mol. Sci. 2023;24:1036. doi: 10.3390/ijms24021036. PubMed DOI PMC

Russell T., Samolej J., Hollinshead M., Smith G.L., Kite J., Elliott G. Novel Role for ESCRT-III Component CHMP4C in the Integrity of the Endocytic Network Utilized for Herpes Simplex Virus Envelopment. mBio. 2021;12:e02183-20. doi: 10.1128/MBIO.02183-20. PubMed DOI PMC

Arii J., Watanabe M., Maeda F., Tokai-Nishizumi N., Chihara T., Miura M., Maruzuru Y., Koyanagi N., Kato A., Kawaguchi Y. ESCRT-III Mediates Budding across the Inner Nuclear Membrane and Regulates Its Integrity. Nat. Commun. 2018;9:3379. doi: 10.1038/s41467-018-05889-9. PubMed DOI PMC

Yu X., Riley T., Levine A.J. The Regulation of the Endosomal Compartment by P53 the Tumor Suppressor Gene. FEBS J. 2009;276:2201–2212. doi: 10.1111/J.1742-4658.2009.06949.X. PubMed DOI

Capalbo L., Mela I., Abad M.A., Jeyaprakash A.A., Edwardson J.M., D’Avino P.P. Coordinated Regulation of the ESCRT-III Component CHMP4C by the Chromosomal Passenger Complex and Centralspindlin during Cytokinesis. Open Biol. 2016;6:160248. doi: 10.1098/rsob.160248. PubMed DOI PMC

Colombo M., Moita C., Van Niel G., Kowal J., Vigneron J., Benaroch P., Manel N., Moita L.F., Théry C., Raposo G. Analysis of ESCRT Functions in Exosome Biogenesis, Composition and Secretion Highlights the Heterogeneity of Extracellular Vesicles. J. Cell Sci. 2013;126:5553–5565. doi: 10.1242/jcs.128868. PubMed DOI

Juan T., Fürthauer M. Biogenesis and Function of ESCRT-Dependent Extracellular Vesicles. Semin. Cell Dev. Biol. 2018;74:66–77. doi: 10.1016/j.semcdb.2017.08.022. PubMed DOI

Eastman S.W., Martin-Serrano J., Chung W., Zang T., Bieniasz P.D. Identification of Human VPS37C, a Component of Endosomal Sorting Complex Required for Transport-I Important for Viral Budding. J. Biol. Chem. 2005;280:628–636. doi: 10.1074/jbc.M410384200. PubMed DOI

Kolmus K., Erdenebat P., Szymanska E., Stewig B., Goryca K., Derezinska-Wołek E., Szumera-Ciećkiewicz A., Brewinska-Olchowik M., Piwocka K., Prochorec-Sobieszek M., et al. Concurrent Depletion of Vps37 Proteins Evokes ESCRT-I Destabilization and Profound Cellular Stress Responses. J. Cell Sci. 2021;134:jcs250951. doi: 10.1242/jcs.250951. PubMed DOI

Jiang Q., Yu Y., Ruan H., Luo Y., Guo X. Morphological and Functional Characteristics of Human Gingival Junctional Epithelium. BMC Oral Health. 2014;14:30. doi: 10.1186/1472-6831-14-30. PubMed DOI PMC

Andreu Z., Yáñez-Mó M. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014;5:109543. doi: 10.3389/fimmu.2014.00442. PubMed DOI PMC

Mathieu M., Névo N., Jouve M., Valenzuela J.I., Maurin M., Verweij F.J., Palmulli R., Lankar D., Dingli F., Loew D., et al. Specificities of Exosome versus Small Ectosome Secretion Revealed by Live Intracellular Tracking of CD63 and CD9. Nat. Commun. 2021;12:4389. doi: 10.1038/s41467-021-24384-2. PubMed DOI PMC

Brosseau C., Colas L., Magnan A., Brouard S. CD9 Tetraspanin: A New Pathway for the Regulation of Inflammation? Front. Immunol. 2018;9:2316. doi: 10.3389/fimmu.2018.02316. PubMed DOI PMC

Kodam S.P., Baghban N., Ullah M. CD9 Role in Proliferation, Rejuvenation, and Therapeutic Applications. Genes Dis. 2023;11:101008. doi: 10.1016/J.GENDIS.2023.05.009. PubMed DOI PMC

Duan H., Hu Y. CD81, a New Actor in the Development of Preeclampsia. Cell. Mol. Immunol. 2021;18:2061. doi: 10.1038/s41423-021-00681-0. PubMed DOI PMC

Vences-Catalán F., Rajapaksa R., Srivastava M.K., Marabelle A., Kuo C.C., Levy R., Levy S. Tetraspanin CD81, a Modulator of Immune Suppression in Cancer and Metastasis. Oncoimmunology. 2015;5:e1120399. doi: 10.1080/2162402X.2015.1120399. PubMed DOI PMC

Pols M.S., Klumperman J. Trafficking and Function of the Tetraspanin CD63. Exp. Cell Res. 2009;315:1584–1592. doi: 10.1016/j.yexcr.2008.09.020. PubMed DOI

Xu J., Gu J., Pei W., Zhang Y., Wang L., Gao J. The Role of Lysosomal Membrane Proteins in Autophagy and Related Diseases. FEBS J. 2024;291:3762–3785. doi: 10.1111/febs.16820. PubMed DOI

Hurwitz S.N., Cheerathodi M.R., Nkosi D., York S.B., Meckes D.G. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1. J. Virol. 2018;92:e01969-17. doi: 10.1128/JVI.01969-17. PubMed DOI PMC

Toribio V., Yáñez-Mó M. Tetraspanins Interweave EV Secretion, Endosomal Network Dynamics and Cellular Metabolism. Eur. J. Cell Biol. 2022;101:151229. doi: 10.1016/j.ejcb.2022.151229. PubMed DOI

Li R., Liu P., Wan Y., Chen T., Wang Q., Mettbach U., Baluška F., Śamaj J., Fang X., Lucas W.J., et al. A Membrane Microdomain-Associated Protein, Arabidopsis Flot1, Is Involved in a Clathrin-Independent Endocytic Pathway and Is Required for Seedling Development. Plant Cell. 2012;24:2105–2122. doi: 10.1105/tpc.112.095695. PubMed DOI PMC

Yu J., Sane S., Kim J.E., Yun S., Kim H.J., Jo K.B., Wright J.P., Khoshdoozmasouleh N., Lee K., Oh H.T., et al. Biogenesis and Delivery of Extracellular Vesicles: Harnessing the Power of EVs for Diagnostics and Therapeutics. Front. Mol. Biosci. 2023;10:1330400. doi: 10.3389/fmolb.2023.1330400. PubMed DOI PMC

Lai R.C., Lim S.K. Membrane Lipids Define Small Extracellular Vesicle Subtypes Secreted by Mesenchymal Stromal Cells. J. Lipid Res. 2018;60:318. doi: 10.1194/jlr.R087411. PubMed DOI PMC

Homma Y., Hiragi S., Fukuda M. Rab Family of Small GTPases: An Updated View on Their Regulation and Functions. FEBS J. 2020;288:36. doi: 10.1111/FEBS.15453. PubMed DOI PMC

Skjeldal F.M., Haugen L.H., Mateus D., Frei D.M., Rødseth A.V., Hu X., Bakke O. De Novo Formation of Early Endosomes during Rab5-to-Rab7a Transition. J. Cell Sci. 2021;134:jcs254185. doi: 10.1242/JCS.254185. PubMed DOI PMC

Gao Y., Zheng X., Chang B., Lin Y., Huang X., Wang W., Ding S., Zhan W., Wang S., Xiao B., et al. Intercellular Transfer of Activated STING Triggered by RAB22A-Mediated Non-Canonical Autophagy Promotes Antitumor Immunity. Cell Res. 2022;32:1086. doi: 10.1038/S41422-022-00731-W. PubMed DOI PMC

Han F., Song Q., Zhang Y., Wang X., Wang Z. Molecular Characterization and Immune Responses of Rab5 in Large Yellow Croaker (Larimichthys crocea) Aquac. Fish. 2017;2:165–172. doi: 10.1016/j.aaf.2017.06.005. DOI

Kong L., Huang S., Bao Y., Chen Y., Hua C., Gao S. Crucial Roles of Rab22a in Endosomal Cargo Recycling. Traffic. 2023;24:397–412. doi: 10.1111/tra.12907. PubMed DOI

Shan J., Chang L.Y., Li D.J., Wang X.Q. Rab27b Promotes Endometriosis by Enhancing Invasiveness of ESCs and Promoting Angiogenesis. Am. J. Reprod. Immunol. 2023;90:e13762. doi: 10.1111/aji.13762. PubMed DOI

Zhang S., Yu M., Guo Q., Li R., Li G., Tan S., Li X., Wei Y., Wu M. Annexin A2 Binds to Endosomes and Negatively Regulates TLR4-Triggered Inflammatory Responses via the TRAM-TRIF Pathway. Sci. Rep. 2015;5:15859. doi: 10.1038/srep15859. PubMed DOI PMC

Huang Y., Jia M., Yang X., Han H., Hou G., Bi L., Yang Y., Zhang R., Zhao X., Peng C., et al. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int. J. Cancer. 2022;151:497–509. doi: 10.1002/ijc.34048. PubMed DOI

Wang Y., Wu X., Wang Q., Zheng M., Pang L. Annexin A2 Functions Downstream of C-Jun N-terminal Kinase to Promote Skin Fibroblast Cell Migration. Mol. Med. Rep. 2017;15:4207–4216. doi: 10.3892/MMR.2017.6535. PubMed DOI

Grindheim A.K., Saraste J., Vedeler A. Protein Phosphorylation and Its Role in the Regulation of Annexin A2 Function. Biochim. Biophys. Acta Gen. Subj. 2017;1861:2515–2529. doi: 10.1016/J.BBAGEN.2017.08.024. PubMed DOI

Bai X., Ran J., Zhao X., Liang Y., Yang X., Xi Y. The S100A10–AnxA2 Complex Is Associated with the Exocytosis of Hepatitis B Virus in Intrauterine Infection. Lab. Investig. 2021;102:57–68. doi: 10.1038/s41374-021-00681-8. PubMed DOI PMC

Chen Z., Luo L., Ye T., Zhou J., Niu X., Yuan J., Yuan T., Fu D., Li H., Li Q., et al. Identification of Specific Markers for Human Pluripotent Stem Cell-Derived Small Extracellular Vesicles. J. Extracell. Vesicles. 2024;13:e12409. doi: 10.1002/jev2.12409. PubMed DOI PMC

Hiraga C., Yamamoto S., Hashimoto S., Kasahara M., Minamisawa T., Matsumura S., Katakura A., Yajima Y., Nomura T., Shiba K. Pentapartite Fractionation of Particles in Oral Fluids by Differential Centrifugation. Sci. Rep. 2021;11:3326. doi: 10.1038/s41598-021-82451-6. PubMed DOI PMC

Mathivanan S. ExoCarta: Exosome Markers. [(accessed on 6 January 2025)]. Available online: http://exocarta.org.

Than U.T.T., Guanzon D., Broadbent J.A., Leavesley D.I., Salomon C., Parker T.J. Differential Expression of Keratinocyte-Derived Extracellular Vesicle Mirnas Discriminate Exosomes from Apoptotic Bodies and Microvesicles. Front. Endocrinol. 2018;9:535. doi: 10.3389/fendo.2018.00535. PubMed DOI PMC

Tang Y., Zhou Y., Li H.J. Advances in Mesenchymal Stem Cell Exosomes: A Review. Stem Cell Res. Ther. 2021;12:71. doi: 10.1186/s13287-021-02138-7. PubMed DOI PMC

Shelke G.V., Yin Y., Jang S.C., Lässer C., Wennmalm S., Hoffmann H.J., Li L., Gho Y.S., Nilsson J.A., Lötvall J. Endosomal Signalling via Exosome Surface TGFβ-1. J. Extracell. Vesicles. 2019;8:1650458. doi: 10.1080/20013078.2019.1650458. PubMed DOI PMC

Choezom D., Gross J.C. Neutral Sphingomyelinase 2 Controls Exosome Secretion by Counteracting V-ATPase-Mediated Endosome Acidification. J. Cell Sci. 2022;135:jcs259324. doi: 10.1242/jcs.259324. PubMed DOI PMC

Fuentes P., Sesé M., Guijarro P.J., Emperador M., Sánchez-Redondo S., Peinado H., Hümmer S., Cajal S.R.Y. ITGB3-Mediated Uptake of Small Extracellular Vesicles Facilitates Intercellular Communication in Breast Cancer Cells. Nat. Commun. 2020;11:4261. doi: 10.1038/s41467-020-18081-9. PubMed DOI PMC

Bai S., Hou W., Yao Y., Meng J., Wei Y., Hu F., Hu X., Wu J., Zhang N., Xu R., et al. Exocyst Controls Exosome Biogenesis via Rab11a. Mol. Ther. Nucleic Acids. 2021;27:535. doi: 10.1016/J.OMTN.2021.12.023. PubMed DOI PMC

Schuldner M., Dörsam B., Shatnyeva O., Reiners K.S., Kubarenko A., Hansen H.P., Finkernagel F., Roth K., Theurich S., Nist A., et al. Exosome-Dependent Immune Surveillance at the Metastatic Niche Requires BAG6 and CBP/P300-Dependent Acetylation of P53. Theranostics. 2019;9:6047–6062. doi: 10.7150/thno.36378. PubMed DOI PMC

Horbay R., Hamraghani A., Ermini L., Holcik S., Beug S.T., Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int. J. Mol. Sci. 2022;23:15317. doi: 10.3390/ijms232315317. PubMed DOI PMC

Egea-Jimenez A.L., Zimmermann P. Phospholipase D and Phosphatidic Acid in the Biogenesis and Cargo Loading of Extracellular Vesicles. J. Lipid Res. 2018;59:1554. doi: 10.1194/JLR.R083964. PubMed DOI PMC

Jiang T.Y., Shi Y.Y., Cui X.W., Pan Y.F., Lin Y.K., Feng X.F., Ding Z.W., Yang C., Tan Y.X., Dong L.W., et al. PTEN Deficiency Facilitates Exosome Secretion and Metastasis in Cholangiocarcinoma by Impairing TFEB-Mediated Lysosome Biogenesis. Gastroenterology. 2023;164:424–438. doi: 10.1053/j.gastro.2022.11.025. PubMed DOI

Lee Y.J., Shin K.J., Chae Y.C. Regulation of Cargo Selection in Exosome Biogenesis and Its Biomedical Applications in Cancer. Exp. Mol. Med. 2024;56:877–889. doi: 10.1038/s12276-024-01209-y. PubMed DOI PMC

Lv L.L., Feng Y., Wen Y., Wu W.J., Ni H.F., Li Z.L., Zhou L.T., Wang B., Zhang J.D., Crowley S.D., et al. Exosomal CCL2 from Tubular Epithelial Cells Is Critical for Albumin-Induced Tubulointerstitial Inflammation. J. Am. Soc. Nephrol. 2018;29:919. doi: 10.1681/ASN.2017050523. PubMed DOI PMC

Coulter M.E., Dorobantu C.M., Lodewijk G.A., Delalande F., Cianferani S., Ganesh V.S., Smith R.S., Lim E.T., Xu C.S., Pang S., et al. The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles. Cell Rep. 2018;24:973. doi: 10.1016/J.CELREP.2018.06.100. PubMed DOI PMC

Liu C., Liu D., Wang S., Gan L., Yang X., Ma C. Identification of the SNARE Complex That Mediates the Fusion of Multivesicular Bodies with the Plasma Membrane in Exosome Secretion. J. Extracell. Vesicles. 2023;12:12356. doi: 10.1002/jev2.12356. PubMed DOI PMC

Balakrishnan A., Saleh F., Adnani L., Chinchalongporn V., El-Sehemy A., Olender T., Chen M.J., Ahmad S.T., Prokopchuk O., Vasan L., et al. SMPD3-Mediated Extracellular Vesicle Biogenesis Inhibits Oligodendroglioma Growth. bioRxiv. 2020 doi: 10.1101/2020.07.14.202200. DOI

Matsui T., Sakamaki Y., Hiragi S., Fukuda M. VAMP5 and Distinct Sets of Cognate Q-SNAREs Mediate Exosome Release. Cell Struct. Funct. 2023;48:187–198. doi: 10.1247/csf.23067. PubMed DOI PMC

Larios J., Mercier V., Roux A., Gruenberg J. ALIX-and ESCRT-III-Dependent Sorting of Tetraspanins to Exosomes. J. Cell Biol. 2020;219:e201904113. doi: 10.1083/JCB.201904113. PubMed DOI PMC

Hsu C., Morohashi Y., Yoshimura S.I., Manrique-Hoyos N., Jung S.Y., Lauterbach M.A., Bakhti M., Grønborg M., Möbius W., Rhee J.S., et al. Regulation of Exosome Secretion by Rab35 and Its GTPase-Activating Proteins TBC1D10A–C. J. Cell Biol. 2010;189:223. doi: 10.1083/jcb.200911018. PubMed DOI PMC

Akrap I., Thavamani A., Nordheim A. Vps4A-Mediated Tumor Suppression upon Exosome Modulation? Ann. Transl. Med. 2016;4:180. doi: 10.21037/ATM.2016.04.18. PubMed DOI PMC

Lai W.Q., Xia H.F., Chen G.H., Wang X.-L., Yang J.G., Wu L.Z., Zhao Y.F., Jia Y.L., Chen G. P-AKT/VPS4B Regulates the Small Extracellular Vesicle Size in Venous Malformation Endothelial Cells. Oral Dis. 2024;30:1273–1285. doi: 10.1111/ODI.14608. PubMed DOI

Sun Y., Zheng W., Guo Z., Ju Q., Zhu L., Gao J., Zhou L., Liu F., Xu Y., Zhan Q., et al. A Novel TP53 Pathway Influences the HGS-Mediated Exosome Formation in Colorectal Cancer. Sci. Rep. 2016;6:28083. doi: 10.1038/srep28083. PubMed DOI PMC

Fraser K.B., Moehle M.S., Daher J.P.L., Webber P.J., Williams J.Y., Stewart C.A., Yacoubian T.A., Cowell R.M., Dokland T., Ye T., et al. LRRK2 Secretion in Exosomes Is Regulated by 14-3-3. Hum. Mol. Genet. 2013;22:4988–5000. doi: 10.1093/HMG/DDT346. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...