Isoxazole-Based Compounds Targeting the Taxane-Binding Site of Tubulin
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
Grantová podpora
The authors gratefully acknowledge financial support from the Palacký University Olomouc (IGA_PrF_2025_011) and from the Czech Ministry of Education, Youth and Sports via the project National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102 funded by the European Union - Next Generation EU).
PubMed
40702793
PubMed Central
PMC12287683
DOI
10.1002/ardp.70031
Knihovny.cz E-zdroje
- Klíčová slova
- antiproliferative activity, cytoskeleton, isoxazoles, mitotic block, tubulin,
- MeSH
- chemorezistence účinky léků MeSH
- isoxazoly * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- modulátory tubulinu * farmakologie chemická syntéza chemie MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- přemostěné cyklické sloučeniny farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemická syntéza chemie MeSH
- screeningové testy protinádorových léčiv MeSH
- simulace molekulového dockingu MeSH
- taxoidy * farmakologie chemie MeSH
- tubulin * metabolismus MeSH
- vazebná místa účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isoxazoly * MeSH
- modulátory tubulinu * MeSH
- přemostěné cyklické sloučeniny MeSH
- protinádorové látky * MeSH
- taxane MeSH Prohlížeč
- taxoidy * MeSH
- tubulin * MeSH
Taxanes and other tubulin-targeting medications are essential for treating advanced malignancies, especially in patients undergoing less aggressive chemotherapy. However, their clinical efficacy is often limited by significant off-target toxicity and adverse side effects. In this study, the synthesis and characterisation of novel steroidal A-ring-fused isoxazoles, which were obtained through iodine-mediated oxidative cyclization of dihydrotestosterone (DHT)-derived α,β-unsaturated oximes, are reported. According to mechanistic studies, the most potent compounds induced mitotic arrest and disrupted cytoskeletal integrity at low micromolar concentrations. The lead compound, 2j, notably increased the rate of tubulin polymerisation in vitro and stabilised polymerised tubulin in the cells, leading to a G2/M block of the cell cycle. Molecular docking studies indicated that 2j is bound preferably to the taxane site on tubulin, forming conserved interactions. MicroScale Thermophoresis was used to further study this binding and showed a nanomolar KD for 2j. The fact that 2j maintained its activity in docetaxel-resistant prostate cancer cells, demonstrating its ability to circumvent resistance pathways linked to existing therapies with taxane-like drugs, supports its clinical relevance. Therefore, our results encourage additional research and development for its potential therapeutic use in cancer treatment, particularly in resistant cases.
Department of Molecular and Analytical Chemistry University of Szeged Szeged Hungary
Institute of Pharmacodynamics and Biopharmacy University of Szeged Szeged Hungary
Zobrazit více v PubMed
Pellegrini F. and Budman D. R., “Review: Tubulin Function, Action of Antitubulin Drugs, and New Drug Development,” Cancer Investigation 23, no. 3 (2005): 264–273, 10.1081/CNV-200055970. PubMed DOI
Jordan M. A. and Wilson L., “Microtubules as a Target for Anticancer Drugs,” Nature Reviews Cancer 4 (2004): 253–265, 10.1038/nrc1317. PubMed DOI
Dumontet C. and Jordan M. A., “Microtubule‐Binding Agents: A Dynamic Field of Cancer Therapeutics,” Nature Reviews Drug Discovery 9 (2010): 790–803, 10.1038/nrd3253. PubMed DOI PMC
Alushin G. M., Lander G. C., Kellogg E. H., Zhang R., Baker D., and Nogales E., “High‐Resolution Microtubule Structures Reveal the Structural Transitions in αβ‐Tubulin Upon GTP Hydrolysis,” Cell 157, no. 5 (May 2014): 1117–1129, 10.1016/j.cell.2014.03.053. PubMed DOI PMC
Pérez‐Peña H., Abel A. C., Shevelev M., Prota A. E., Pieraccini S., and Horvath D., “Computational Approaches to the Rational Design of Tubulin‐Targeting Agents,” Biomolecules 13, no. 2 (February 2023): 285, 10.3390/biom13020285. PubMed DOI PMC
Prota A. E., Bargsten K., Northcote P. T., et al., “Structural Basis of Microtubule Stabilization by Laulimalide and Peloruside A,” Angewandte Chemie International Edition 53, no. 6 (February 2014): 1621–1625, 10.1002/anie.201307749. PubMed DOI
Steinmetz M. O. and Prota A. E., “Microtubule‐Targeting Agents: Strategies to Hijack the Cytoskeleton,” Trends in Cell Biology 28, no. 10 (October 2018): 776–792, 10.1016/j.tcb.2018.05.001. PubMed DOI
Prota A. E., Lucena‐Agell D., Ma Y., et al., “Structural Insight Into the Stabilization of Microtubules by Taxanes,” eLife 12 (March 2023): e84791, 10.7554/eLife.84791. PubMed DOI PMC
Kellogg E. H., Hejab N. M. A., Howes S., et al., “Insights Into the Distinct Mechanisms of Action of Taxane and Non‐Taxane Microtubule Stabilizers From Cryo‐EM Structures,” Journal of Molecular Biology 429, no. 5 (March 2017): 633–646, 10.1016/j.jmb.2017.01.001. PubMed DOI PMC
Ravelli R. B. G., Gigant B., Curmi P. A., et al., “Insight Into Tubulin Regulation From a Complex With Colchicine and a Stathmin‐Like Domain,” Nature 428, no. 6979 (March 2004): 198–202, 10.1038/nature02393. PubMed DOI
Wang X., Gigant B., Zheng X., and Chen Q., “Microtubule‐Targeting Agents for Cancer Treatment: Seven Binding Sites and Three Strategies,” MedComm – Oncology 2 (2023): e46, 10.1002/mog2.46. DOI
Mahmud F., Deng S., Chen H., Miller D. D., and Li W., “Orally Available Tubulin Inhibitor VERU‐111 Enhances Antitumor Efficacy in Paclitaxel‐Resistant Lung Cancer,” Cancer Letters 495 (December 2020): 76–88, 10.1016/j.canlet.2020.09.004. PubMed DOI PMC
Dreicer R., Chu F., Cahn D. J., et al., “Phase 3 VERACITY Clinical Study of Sabizabulin in Men With Metastatic Castrate‐Resistant Prostate Cancer Who Have Progressed on an Androgen Receptor Targeting Agent,” Journal of Clinical Oncology 40, no. 6_suppl (February 2022): TPS217, 10.1200/JCO.2022.40.6_suppl.TPS217. DOI
Kalnins T., Vitkovska V., Kazak M., et al., “Development of Potent Microtubule Targeting Agent by Structural Simplification of Natural Diazonamide,” Journal of Medicinal Chemistry 67, no. 11 (June 2024): 9227–9259, 10.1021/acs.jmedchem.4c00388. PubMed DOI
Wu C., Zhang L., Zhou Z., et al., “Discovery and Mechanistic Insights Into Thieno[3,2‐d]pyrimidine and Heterocyclic Fused Pyrimidines Inhibitors Targeting Tubulin for Cancer Therapy,” European Journal of Medicinal Chemistry 276 (October 2024): 116649, 10.1016/j.ejmech.2024.116649. PubMed DOI
Zhao W., Shen R., Li H. M., Zhong J. J., and Tang Y. J., “Podophyllotoxin Derivatives‐Tubulin Complex Reveals a Potential Binding Site of Tubulin Polymerization Inhibitors in α‐Tubulin Adjacent to Colchicine Site,” International Journal of Biological Macromolecules 276, no. Pt 1 (September 2024): 133678, 10.1016/j.ijbiomac.2024.133678. PubMed DOI
Sysak A. and Obmińska‐Mrukowicz B., “Isoxazole Ring as a Useful Scaffold in a Search for New Therapeutic Agents,” European Journal of Medicinal Chemistry 137 (September 2017): 292–309, 10.1016/j.ejmech.2017.06.002. PubMed DOI
Hu F. and Szostak M., “Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond,” Advanced Synthesis & Catalysis 357, no. 15 (2015): 2771–2777, 10.1002/adsc.201500319. DOI
Morita T., Yugandar S., Fuse S., and Nakamura H., “Recent Progresses in the Synthesis of Functionalized Isoxazoles,” Tetrahedron Letters 59, no. 13 (2018): 1159–1171, 10.1016/j.tetlet.2018.02.020. DOI
Zhu J., Mo J., Lin H., Chen Y., and Sun H., “The Recent Progress of Isoxazole in Medicinal Chemistry,” Bioorganic & Medicinal Chemistry 26, no. 12 (July 2018): 3065–3075, 10.1016/j.bmc.2018.05.013. PubMed DOI
Malik U. and Pal D., “Isoxazole Compounds: Unveiling the Synthetic Strategy, In‐Silico Sar & Toxicity Studies and Future Perspective as PARP Inhibitor in Cancer Therapy,” European Journal of Medicinal Chemistry 279 (November 2024): 116898, 10.1016/j.ejmech.2024.116898. PubMed DOI
Arya G. C., Kaur K., and Jaitak V., “Isoxazole Derivatives as Anticancer Agent: A Review on Synthetic Strategies, Mechanism of Action and SAR Studies,” European Journal of Medicinal Chemistry 221 (October 2021): 113511, 10.1016/j.ejmech.2021.113511. PubMed DOI
Rudovich A. S., Peřina M., Krech A. V., et al., “Synthesis and Biological Evaluation of New Isoxazolyl Steroids as Anti‐Prostate Cancer Agents,” International Journal of Molecular Sciences 23, no. 21 (November 2022): 13534, 10.3390/ijms232113534. PubMed DOI PMC
Kovács F., Adamecz D. I., Nagy F. I., Papp B., Kiricsi M., and Frank É., “Substitutional Diversity‐Oriented Synthesis and In Vitro Anticancer Activity of Framework‐Integrated Estradiol‐Benzisoxazole Chimeras,” Molecules 27, no. 21 (November 2022): 7456, 10.3390/molecules27217456. PubMed DOI PMC
Podhorecka M., Macheta A., Chocholska S., et al., “Danazol Induces Apoptosis and Cytotoxicity of Leukemic Cells Alone and in Combination With Purine Nucleoside Analogs in Chronic Lymphocytic Leukemia,” Annals of Hematology 95, no. 3 (February 2016): 425–435, 10.1007/s00277-015-2579-5. PubMed DOI PMC
Deka S. J., Roy A., Ramakrishnan V., Manna D., and Trivedi V., “Danazol Has Potential to Cause PKC Translocation, Cell Cycle Dysregulation, and Apoptosis in Breast Cancer Cells,” Chemical Biology & Drug Design 89, no. 6 (June 2017): 953–963, 10.1111/cbdd.12921. PubMed DOI
Capezzuoli T., Rossi M., La Torre F., Vannuccini S., and Petraglia F., “Hormonal Drugs for the Treatment of Endometriosis,” Current Opinion in Pharmacology 67 (December 2022): 102311, 10.1016/j.coph.2022.102311. PubMed DOI
Minorics R. and Zupko I., “Steroidal Anticancer Agents: An Overview of Estradiol‐Related Compounds,” Anti‐Cancer Agents in Medicinal Chemistry 18, no. 5 (2018): 652–666, 10.2174/1871520617666171114111721. PubMed DOI
D'Amato R. J., Lin C. M., Flynn E., Folkman J., and Hamel E., “2‐Methoxyestradiol, an Endogenous Mammalian Metabolite, Inhibits Tubulin Polymerization by Interacting at the Colchicine Site,” Proceedings of the National Academy of Sciences 91, no. 9 (April 1994): 3964–3968, 10.1073/pnas.91.9.3964. PubMed DOI PMC
Lakhani N. J., Sarkar M. A., Venitz J., and Figg W. D., “2‐Methoxyestradiol, a Promising Anticancer Agent,” Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 23, no. 2 (February 2003): 165–172, 10.1592/phco.23.2.165.32088. PubMed DOI
Kamath K., Okouneva T., Larson G., Panda D., Wilson L., and Jordan M. A., “2‐Methoxyestradiol Suppresses Microtubule Dynamics and Arrests Mitosis Without Depolymerizing Microtubules,” Molecular Cancer Therapeutics 5, no. 9 (September 2006): 2225–2233, 10.1158/1535-7163.MCT-06-0113. PubMed DOI
Sun M., Zhang Y., Qin J., et al., “Synthesis and Biological Evaluation of New 2‐Methoxyestradiol Derivatives: Potent Inhibitors of Angiogenesis and Tubulin Polymerization,” Bioorganic Chemistry 113 (August 2021): 104988, 10.1016/j.bioorg.2021.104988. PubMed DOI
Njangiru I. K., Bózsity‐Faragó N., Resch V. E., et al., “A Novel 2‐Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in Hela Cells In Vitro,” Pharmaceutics 16, no. 5 (May 2024): 622, 10.3390/pharmaceutics16050622. PubMed DOI PMC
Huber J., Wölfling J., Schneider G., et al., “Synthesis of Antiproliferative 13α‐D‐homoestrones via Lewis Acid‐Promoted One‐Pot Prins‐Ritter Reactions of D‐Secosteroidal Δ‐Alkenyl‐Aldehydes,” Steroids 102 (October 2015): 76–84, 10.1016/j.steroids.2015.07.004. PubMed DOI
Du L., Yee S. S., Ramachandran K., and Risinger A. L., “Elucidating Target Specificity of the Taccalonolide Covalent Microtubule Stabilizers Employing a Combinatorial Chemical Approach,” Nature Communications 11, no. 1 (January 2020): 654, 10.1038/s41467-019-14277-w. PubMed DOI PMC
Peřina M., Kiss M. A., Mótyán G., et al., “A‐Ring‐Fused Pyrazoles of Dihydrotestosterone Targeting Prostate Cancer Cells via the Downregulation of the Androgen Receptor,” European Journal of Medicinal Chemistry 249 (March 2023): 115086, 10.1016/j.ejmech.2023.115086. PubMed DOI
Kiss M. A., Peřina M., Bazgier V., et al., “Synthesis of Dihydrotestosterone Derivatives Modified in the A‐Ring With (Hetero)Arylidene, Pyrazolo[1,5‐a]Pyrimidine and Triazolo[1,5‐a]Pyrimidine Moieties and Their Targeting of the Androgen Receptor in Prostate Cancer,” Journal of Steroid Biochemistry and Molecular Biology 211 (July 2021): 105904, 10.1016/j.jsbmb.2021.105904. PubMed DOI
Mótyán G., Gopisetty M. K., Kiss‐Faludy R. E., et al., “Anti‐Cancer Activity of Novel Dihydrotestosterone‐Derived Ring A‐Condensed Pyrazoles on Androgen Non‐Responsive Prostate Cancer Cell Lines,” International Journal of Molecular Sciences 20, no. 9 (May 2019): 2170, 10.3390/ijms20092170. PubMed DOI PMC
Frank É., Mucsi Z., Szécsi M., Zupkó I., Wölfling J., and Schneider G., “Intramolecular Approach to Some New D‐Ring‐Fused Steroidal Isoxazolidines by 1,3‐Dipolar Cycloaddition: Synthesis, Theoretical and In Vitro Pharmacological Studies,” New Journal of Chemistry 34, no. 12 (2010): 2671–2681, 10.1039/C0NJ00150C. DOI
Hou J., Zhang X., Yu W., and Chang J., “I2‐Mediated Oxidative C‐O Bond Formation for the Synthesis of Isoxazoles,” Chinese Journal of Organic Chemistry 38, no. 12 (2018): 3236–3241, 10.6023/cjoc201806026. DOI
Tsuda Y., Iimori M., Nakashima Y., et al., “Mitotic Slippage and the Subsequent Cell Fates After Inhibition of Aurora B During Tubulin‐Binding Agent–Induced Mitotic Arrest,” Scientific Reports 7 (2017): 16762, 10.1038/s41598-017-17002-z. PubMed DOI PMC
Hu C., Zhu X., Wang G. H., et al., “Design, Synthesis and Anti‐Cancer Evaluation of Novel Podophyllotoxin Derivatives as Potent Tubulin‐Targeting Agents,” Medicinal Chemistry Research 27 (2018): 351–365, 10.1007/s00044-017-1992-9. DOI
Senese S., Lo Y. C., Gholkar A. A., et al., “Microtubins: A Novel Class of Small Synthetic Microtubule Targeting Drugs That Inhibit Cancer Cell Proliferation,” Oncotarget 8, no. 61 (October 2017): 104007–104021, 10.18632/oncotarget.21945. PubMed DOI PMC
Kim S. K., Cho S. M., Kim H., et al., “The Colchicine Derivative CT20126 Shows a Novel Microtubule‐Modulating Activity With Apoptosis,” Experimental & Molecular Medicine 45, no. 4 (April 2013): e19, 10.1038/emm.2013.38. PubMed DOI PMC
Zhang X., Huang H., Xu Z., and Zhan R., “2‐Methoxyestradiol Blocks Cell‐Cycle Progression at the G PubMed DOI
Kiss M. A., Peřina M., Bereczki L., et al., “Dihydrotestosterone‐Based A‐Ring‐Fused Pyridines: Microwave‐Assisted Synthesis and Biological Evaluation in Prostate Cancer Cells Compared to Structurally Related Quinolines,” Journal of Steroid Biochemistry and Molecular Biology 231 (July 2023): 106315, 10.1016/j.jsbmb.2023.106315. PubMed DOI
Terrano D. T., Upreti M., and Chambers T. C., “Cyclin‐Dependent Kinase 1‐Mediated Bcl‐xL/Bcl‐2 Phosphorylation Acts as a Functional Link Coupling Mitotic Arrest and Apoptosis,” Molecular and Cellular Biology 30, no. 3 (February 2010): 640–656, 10.1128/MCB.00882-09. PubMed DOI PMC
Guo X. X., Kim H., Li Y., Yim H., Lee S. K., and Jin Y. H., “Cdk2 Acts Upstream of Mitochondrial Permeability Transition During Paclitaxel‐Induced Apoptosis,” Protein & Cell 2, no. 7 (July 2011): 543–553, 10.1007/s13238-011-1071-9. PubMed DOI PMC
Shelanski M. L., Gaskin F., and Cantor C. R., “Microtubule Assembly in the Absence of Added Nucleotides,” Proceedings of the National Academy of Sciences 70, no. 3 (March 1973): 765–768, 10.1073/pnas.70.3.765. PubMed DOI PMC
Lee J. C. and Timasheff S. N., “In Vitro Reconstitution of Calf Brain Microtubules: Effects of Solution Variables,” Biochemistry 16, no. 8 (April 1977): 1754–1764, 10.1021/bi00627a037. PubMed DOI
Wittmann C., Sivchenko A. S., Bacher F., et al., “Inhibition of Microtubule Dynamics in Cancer Cells by Indole‐Modified Latonduine Derivatives and Their Metal Complexes,” Inorganic Chemistry 61, no. 3 (January 2022): 1456–1470, 10.1021/acs.inorgchem.1c03154. PubMed DOI PMC
Kryštof V., Moravcová D., Paprskářová M., et al., “Synthesis and Biological Activity of 8‐Azapurine and Pyrazolo[4,3‐d]Pyrimidine Analogues of Myoseverin,” European Journal of Medicinal Chemistry 41, no. 12 (December 2006): 1405–1411, 10.1016/j.ejmech.2006.07.004. PubMed DOI
Sharma S., Lagisetti C., Poliks B., Coates R. M., Kingston D. G. I., and Bane S., “Dissecting Paclitaxel‐Microtubule Association: Quantitative Assessment of the 2’‐OH Group,” Biochemistry 52, no. 13 (April 2013): 2328–2336, 10.1021/bi400014t. PubMed DOI PMC
Sherline P., Leung J. T., and Kipnis D. M., “Binding of Colchicine to Purified Microtubule Protein,” Journal of Biological Chemistry 250, no. 14 (July 1975): 5481–5486, 10.1016/S0021-9258(19)41207-6. PubMed DOI
Adib R., Montgomery J. M., Atherton J., et al., “Mitotic Phosphorylation by NEK6 and NEK7 Reduces the Microtubule Affinity of EML4 to Promote Chromosome Congression,” Science Signaling 12, no. 594 (August 2019): eaaw2939, 10.1126/scisignal.aaw2939. PubMed DOI
Hunter B., Benoit M. P. M. H., Asenjo A. B., et al., “Kinesin‐8‐Specific Loop‐2 Controls the Dual Activities of the Motor Domain According to Tubulin Protofilament Shape,” Nature Communications 13, no. 1 (July 2022): 4198, 10.1038/s41467-022-31794-3. PubMed DOI PMC
Prota A. E., Danel F., Bachmann F., et al., “The Novel Microtubule‐Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin With Distinct Effects on Microtubule Organization,” Journal of Molecular Biology 426, no. 8 (April 2014): 1848–1860, 10.1016/j.jmb.2014.02.005. PubMed DOI
Gjyrezi A., Xie F., Voznesensky O., et al., “Taxane Resistance in Prostate Cancer Is Mediated by Decreased Drug‐Target Engagement,” Journal of Clinical Investigation 130, no. 6 (June 2020): 3287–3298, 10.1172/JCI132184. PubMed DOI PMC
Cevatemre B., Bulut I., Dedeoglu B., et al., “Exploiting Epigenetic Targets to Overcome Taxane Resistance in Prostate Cancer,” Cell Death & Disease 15, no. 2 (February 2024): 132, 10.1038/s41419-024-06422-1. PubMed DOI PMC
Kroon J., Puhr M., Buijs J. T., et al., “Glucocorticoid Receptor Antagonism Reverts Docetaxel Resistance in Human Prostate Cancer,” Endocrine‐Related Cancer 23, no. 1 (January 2016): 35–45, 10.1530/ERC-15-0343. PubMed DOI PMC
Kiss M. A., “Potenciális Antiandrogének Előállítása a Dihidrotesztoszteron A‐Gyűrűjének Szerkezetmódosításaival [Production of Potential Antiandrogens by Structural Modifications of the A‐Ring of Dihydrotestosterone],” (Doctoral dissertation, University of Szeged, Hungary, ProQuest Dissertations & Theses, 2023): 31357234, 10.14232/phd.11867. DOI