Explosive neural networks via higher-order interactions in curved statistical manifolds

. 2025 Jul 24 ; 16 (1) : 6511. [epub] 20250724

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40707463

Grantová podpora
62828 John Templeton Foundation (JTF)
LCF/BQ/PI23/11970024 "la Caixa" Foundation (Caixa Foundation)
PID2023-146869NA-I00 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)

Odkazy

PubMed 40707463
PubMed Central PMC12290047
DOI 10.1038/s41467-025-61475-w
PII: 10.1038/s41467-025-61475-w
Knihovny.cz E-zdroje

Higher-order interactions underlie complex phenomena in systems such as biological and artificial neural networks, but their study is challenging due to the scarcity of tractable models. By leveraging a generalisation of the maximum entropy principle, we introduce curved neural networks as a class of models with a limited number of parameters that are particularly well-suited for studying higher-order phenomena. Through exact mean-field descriptions, we show that these curved neural networks implement a self-regulating annealing process that can accelerate memory retrieval, leading to explosive order-disorder phase transitions with multi-stability and hysteresis effects. Moreover, by analytically exploring their memory-retrieval capacity using the replica trick, we demonstrate that these networks can enhance memory capacity and robustness of retrieval over classical associative-memory networks. Overall, the proposed framework provides parsimonious models amenable to analytical study, revealing higher-order phenomena in complex networks.

Zobrazit více v PubMed

Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. PubMed PMC

Battiston, F. et al. The physics of higher-order interactions in complex systems.

Amari, S.-i, Nakahara, H., Wu, S. & Sakai, Y. Synchronous firing and higher-order interactions in neuron pool. PubMed

Kuehn, C. & Bick, C. A universal route to explosive phenomena. PubMed PMC

Shomali, S. R., Rasuli, S. N., Ahmadabadi, M. N. & Shimazaki, H. Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons. PubMed PMC

Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems.

Angst, S., Dahmen, S. R., Hinrichsen, H., Hucht, A. & Magiera, M. P. Explosive ising.

D’Souza, R. M., Gómez-Gardenes, J., Nagler, J. & Arenas, A. Explosive phenomena in complex networks.

Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. PubMed PMC

Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. PubMed

Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. PubMed PMC

Montani, F. et al. The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. PubMed

Tkačik, G. et al. Searching for collective behavior in a large network of sensory neurons. PubMed PMC

Ohiorhenuan, I. E. et al. Sparse coding and high-order correlations in fine-scale cortical networks. PubMed PMC

Shimazaki, H., Sadeghi, K., Ishikawa, T., Ikegaya, Y. & Toyoizumi, T. Simultaneous silence organizes structured higher-order interactions in neural populations. PubMed PMC

Tkačik, G. et al. The simplest maximum entropy model for collective behavior in a neural network.

Tkačik, G. et al. Thermodynamics and signatures of criticality in a network of neurons. PubMed PMC

Burns, T. F. & Fukai, T. Simplicial Hopfield networks. In:

Bybee, C. et al. Efficient optimization with higher-order Ising machines. PubMed PMC

Krotov, D. & Hopfield, J. J. Dense associative memory for pattern recognition.

Demircigil, M., Heusel, J., Löwe, M., Upgang, S. & Vermet, F. On a model of associative memory with huge storage capacity.

Agliari, E. et al. Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning.

Lucibello, C. & Mézard, M. Exponential capacity of dense associative memories. PubMed

Krotov, D. A new frontier for Hopfield networks.

Ambrogioni, L. In search of dispersed memories: Generative diffusion models are associative memory networks. PubMed PMC

Ambrogioni, L. The statistical thermodynamics of generative diffusion models: Phase transitions, symmetry breaking, and critical instability. PubMed PMC

Bovier, A. & Niederhauser, B. The spin-glass phase-transition in the Hopfield model with p-spin interactions.

Agliari, E., Fachechi, A. & Marullo, C. Nonlinear PDEs approach to statistical mechanics of dense associative memories.

Amari, S.-i. Information geometry on hierarchy of probability distributions.

Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching.

Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. PubMed PMC

Barra, A., Beccaria, M. & Fachechi, A. A new mechanical approach to handle generalized Hopfield neural networks. PubMed

Agliari, E., Barra, A. & Notarnicola, M. The relativistic Hopfield network: rigorous results.

Agliari, E., Alemanno, F., Barra, A. & Fachechi, A. Generalized guerra’s interpolation schemes for dense associative neural networks. PubMed

Rodríguez-Domínguez, U. & Shimazaki, H. Alternating shrinking higher-order interactions for sparse neural population activity. Preprint at https://arxiv.org/abs/2308.13257 (2023).

Santos, S., Niculae, V., McNamee, D. & Martins, A. F. Hopfield-fenchel-young networks: a unified framework for associative memory retrieval. Preprint at https://arxiv.org/abs/2411.08590 (2024).

Hoover, B., Chau, D. H., Strobelt, H., Ram, P. & Krotov, D. Dense associative memory through the lens of random features.

Jaynes, E. T.

Cofré, R., Herzog, R., Corcoran, D. & Rosas, F. E. A comparison of the maximum entropy principle across biological spatial scales.

Jaynes, E. T. Information theory and statistical mechanics.

Tsallis, C., Mendes, R. & Plastino, A. R. The role of constraints within generalized nonextensive statistics.

Morales, P. A. & Rosas, F. E. Generalization of the maximum entropy principle for curved statistical manifolds.

Valverde-Albacete, F. & Peláez-Moreno, C. The case for shifting the Rényi entropy. PubMed PMC

Umarov, S., Tsallis, C. & Steinberg, S. On aq-central limit theorem consistent with nonextensive statistical mechanics.

Wong, T.-K. L. & Zhang, J. Tsallis and rényi deformations linked via a new

Guisande, N. & Montani, F. Rényi entropy-complexity causality space: a novel neurocomputational tool for detecting scale-free features in EEG/iEEG data. PubMed PMC

Jauregui, M., Zunino, L., Lenzi, E. K., Mendes, R. S. & Ribeiro, H. V. Characterization of time series via rényi complexity–entropy curves.

Wong, T.-K. L. Logarithmic divergences from optimal transport and rényi geometry.

Vigelis, R. F., De Andrade, L. H. & Cavalcante, C. C. Properties of a generalized divergence related to Tsallis generalized divergence.

Amari, S.-I.

Roudi, Y., Dunn, B. & Hertz, J. Multi-neuronal activity and functional connectivity in cell assemblies. PubMed

Montúfar, G. in

Nakano, K. Associatron-a model of associative memory.

Amari, S.-I. Learning patterns and pattern sequences by self-organizing nets of threshold elements.

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. PubMed PMC

Amit, D. J.

Coolen, A. C., Kühn, R. & Sollich, P.

Coolen, A. In

Coolen, A. In

Mattis, D. Solvable spin systems with random interactions.

Kochmański, M., Paszkiewicz, T. & Wolski, S. Curie–Weiss magnet—a simple model of phase transition.

Amit, D. J., Gutfreund, H. & Sompolinsky, H. Storing infinite numbers of patterns in a spin-glass model of neural networks. PubMed

Bovier, A., Gayrard, V. & Picco, P. Gibbs states of the Hopfield model with extensively many patterns.

Talagrand, M. Rigorous results for the Hopfield model with many patterns.

Shcherbina, M. & Tirozzi, B. The free energy of a class of Hopfield models.

Krizhevsky, A.

Fontanari, J. F. & Theumann, W. On the storage of correlated patterns in Hopfield’s model.

Agliari, E., Barra, A., De Antoni, A. & Galluzzi, A. Parallel retrieval of correlated patterns: from Hopfield networks to Boltzmann machines. PubMed

Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...