Analysing plate fixation of a comminuted fracture of the proximal ulna in relation to the elbow joint: a finite element study
Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004634
European Commission
FSI-S-23-8240
Vysoké Učení Technické v Brně
PubMed
40722181
PubMed Central
PMC12302834
DOI
10.1186/s13018-025-06031-4
PII: 10.1186/s13018-025-06031-4
Knihovny.cz E-zdroje
- Klíčová slova
- Elbow joint, Finite element analysis, Interfragmentary motion, Locking compression plate, Olecranon fracture, Proximal ulna comminuted fracture,
- Publikační typ
- časopisecké články MeSH
This study investigated the biomechanical behavior of four different screw configurations used to fix comminuted proximal ulna fractures with a locking compression plate (LCP), via a detailed finite element model based on realistic anatomical geometry. The model incorporated realistic anatomical geometry including both cortical and cancellous bone, soft tissue constraints, and loading conditions representing the physiological self-weight of the forearm, with the humerus fixed at its proximal end. The stress distribution on the plate, strain intensity within the bone tissue, and interfragmentary motion (IFM) between fracture fragments were evaluated for each configuration. The results indicate that all the tested configurations provide adequate stability under normal loading conditions, with no risk of material failure. However, excessive stress concentrations were observed in specific screw regions depending on the configuration, particularly when proximal screws anchoring the olecranon (e.g. screws 2 and 3 in Variant 3) were omitted. Strain analysis revealed moderate physiological bone loading across variants, whereas IFM assessment highlighted the importance of securing the coronoid and apical fragments to prevent compromised healing. These findings suggest that a specific reductions in osteosynthetic material, such as omitting certain diaphyseal screws while maintaining crucial olecranon and coronoid fixation, may provide sufficient fracture stabilisation under the modelled conditions, potentially minimising implant-related complications. This modelling approach offers a valuable tool for preclinical assessment of osteosynthesis strategies and supports future comparative research on fixation methods with varying biomechanical properties.
Zobrazit více v PubMed
Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. Aug. 2006;37(8)691–697 10.1016/j.injury.2006.04.130 PubMed
Duckworth AD, Clement ND, Aitken SA, Court-Brown CM, McQueen MM. The epidemiology of fractures of the proximal ulna. Injury. Mar. 2012;43(3):343–346. 10.1016/j.injury.2011.10.017 PubMed
Wilkerson JA, Rosenwasser MP. Surgical techniques of olecranon fractures. J Hand Surg Am. Aug. 2014;39(8):1606–14. 10.1016/j.jhsa.2014.05.014. PubMed
Tarallo L, Mugnai R, Adani R, Capra F, Zambianchi F, Catani F. Simple and comminuted displaced olecranon fractures: A clinical comparison between tension band wiring and plate fixation techniques, Arch Orthop Trauma Sur. Aug. 2014;134(8):1107–1114. 10.1007/s00402-014-2021-9 PubMed
Qi H, et al. Comparison of clinical outcomes of three internal fixation techniques in the treatment of olecranon fracture: A retrospective clinical study. BMC Musculoskelet Disord. Dec. 2022;23(1):521. 10.1186/s12891-022-05482-8. PubMed PMC
Powell AJ, Farhan-Alanie OM, McGraw IWW. Tension band wiring versus locking plate fixation for simple, two-part Mayo 2A olecranon fractures: A comparison of post-operative outcomes, complications, reoperations and economics, Musculoskelet Surg. Aug. 2019;103(2):155–160. 10.1007/s12306-018-0556-6 PubMed
Cutter B, Kelly SR, Beckett CR, Huish EG. The Biomechanical strength of olecranon fixation constructs: A systematic review and meta-regression. Int J Res Orthop. Feb. 2022;8(2):240. 10.18203/issn.2455-4510.IntJResOrthop20220614.
Bethell MA et al. Tension band wiring and plate fixation for olecranon fractures– A systematic review and meta-analysis, JSES reviews, reports, and techniques, Jan. 2025, 10.1016/j.xrrt.2024.12.016 PubMed PMC
Wellman DS, et al. Comminuted olecranon fractures: Biomechanical testing of locked versus minifragment non-locked plate fixation. Arch Orthop Trauma Surg. Sep. 2017;137(9):1173–9. 10.1007/s00402-017-2735-6. PubMed
Anderson ML, Larson AN, Merten SM, Steinmann SP. Congruent elbow plate fixation of olecranon fractures. J Orthop Trauma. Jul. 2007;21(6):386–393. 10.1097/BOT.0b013e3180ce831e PubMed
Wainberg SH, Moens NMM. The effect of working length, fracture, and screw configuration on plate strain in a 3.5 2-mm LCP bone model of comminuted fractures, VCOT Open, Jul. 2024;7(2):e117-e118 10.1055/s-0044-1787646
Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. Mar. 2005;16:S36–43. 10.1007/s00198-004-1728-9. PubMed
Klein P et al., The initial phase of fracture healing is specifically sensitive to mechanical conditions. Journal of Orthopaedic Research. Jul. 2003;21(4):662–669. 10.1016/S0736-0266(02)00259-0 PubMed
Augat P, Hollensteiner M, von Rüden C. The role of mechanical stimulation in the enhancement of bone healing. Injury. Jun. 2021;52:S78–S83. 10.1016/j.injury.2020.10.009 PubMed
Wolf S et al., The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clinical Biomechanics. Jun. 1998;13(4):–5, 359–364. 10.1016/S0268-0033(98)00097-7 PubMed
Rechter GR, Anthony RT, Rennard J, Kellam JF, Warner SJ. The impact of early axial interfragmentary motion on the fracture healing environment: A scoping review., Injury. Dec. 2024;(55)12:111917. 10.1016/j.injury.2024.111917 PubMed
Miramini S, Zhang L, Richardson M, Mendis P, Oloyede A, Ebeling P. The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation. Australas Phys Eng Sci Med. Mar. 2016;39(1):123–33. 10.1007/s13246-015-0407-9. PubMed
Du B, et al. Efficacy comparison of Kirschner-wire tension band and anchor loop plate in treatment of olecranon fracture. Front Bioeng Biotechnol. Sep. 2023;11. 10.3389/fbioe.2023.1203244. PubMed PMC
Yin N, Pan M, Li C, Du L, Ding L. The effect of ding’s screw and tension band wiring for treatment of olecranon fractures: a finite element study. BMC Musculoskelet Disord. Jul. 2023;24(1):603. 10.1186/s12891-023-06684-4. PubMed PMC
Lubberts B, Mellema JJ, Janssen SJ, Ring D. Fracture line distribution of olecranon fractures. Arch Orthop Trauma Surg. Jan. 2017;137(1):37–42. 10.1007/s00402-016-2593-7. PubMed
Morrey BF. Functional evaluation of the elbow. Morrey’s the elbow and its disorders. Elsevier; 2018. pp. 66–74. 10.1016/B978-0-323-34169-1.00005-X.
Hodgson S, ‘AO Principles of Fracture Management’., The Annals of The Royal College of Surgeons of England. Jul. 2009;91(5):448–449. 10.1308/rcsann.2009.91.5.448b
Marcián P et al., On the level of computational models in biomechanics depending on gained data from CT/MRI and micro-CT. Mendel. Jan. 2011:455–462.
Rafehi S, Lalone E, Johnson M, King GJW, Athwal GS. An anatomic study of coronoid cartilage thickness with special reference to fractures. J Shoulder Elbow Surg. Jul. 2012;21(7):961–968. 10.1016/j.jse.2011.05.015 PubMed
Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17(5):347–55. 10.1016/1350-4533(95)97314-F. PubMed
Cowin SC, Sadegh AM. Non-interacting modes for stress, strain and energy in anisotropic hard tissue. J Biomech. 1991;24(9):859–67. 10.1016/0021-9290(91)90311-A. PubMed
Rho J-Y, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18(20):1325–1330. 10.1016/S0142-9612(97)00073-2 PubMed
Reilly DT, Burstein AH, Frankel VH. The elastic modulus for bone. J Biomech. 1974;7(3):271–5. 10.1016/0021-9290(74)90018-9. PubMed
Zimmer, Biomet. Zimmer
Medin as, Instruments and, implants for traumatology. Medin, a.s. Accessed: Jun. 02, 2025. [Online]. Available: https://www.medin.cz/media/cache/file/08/TRAUMATOLOGIE-_-KATALOG-2024-_-14.10.2024.pdf.
Peña E, Calvo B, Martínez MA, Doblaré M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39(9):1686–701. 10.1016/j.jbiomech.2005.04.030. PubMed
Bevan MA et al. Mechanical Properties and Behavior of Additive Manufactured Stainless Steel 316L. 2017;577–583. 10.1007/978-3-319-51382-9_63
Kang L, Chen F, Bradford MA, Liu X. Experimental study of mechanical properties of laser additively manufactured 316L stainless steels. Structures. Aug. 2023;54:221–235. 10.1016/j.istruc.2023.05.053
Kusy RP, Dilley GJ. Materials Science Elastic Modulus of a Triple-stranded Stainless Steel Arch Wire via Three- and Four-point Bending. J Dent Res. Oct. 1984;63(10):1232–1240. 10.1177/00220345840630101401 PubMed
Odegard BC, West AJ. On the thermo-mechanical behavior and hydrogen compatibility of 22-13-5 stainles steel. Mater Sci Eng. Jun. 1975;19(2):261–9. 10.1016/0025-5416(75)90113-5.
Aydın, Tözeren. Human Body Dynamics. 2000 10.1007/b97432
Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I. The weight of nations: an Estimation of adult human biomass. BMC Public Health. Dec. 2012;12(1):439. 10.1186/1471-2458-12-439. PubMed PMC
Reed J, Bowen JD. Chapter 33 - Principles of sports rehabilitation. In: Seidenberg PH, Beutler AI, editors. The sports medicine resource manual. Philadelphia: W.B. Saunders; 2008. pp. 431–6. 10.1016/B978-141603197-0.10033-3.
Eghan-Acquah E, et al. Enhancing Biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis. Comput Methods Programs Biomed. Dec. 2024;257:108480. 10.1016/j.cmpb.2024.108480. PubMed
Netter FH. Atlas of human anatomy: classic regional approach. Volume 8. Elsevier; 2022.
Nalbone L, et al. Study of a constrained finite element elbow prosthesis: the influence of the implant placement. J Orthop Traumatol. Apr. 2023;24(1):15. 10.1186/s10195-023-00690-x. PubMed PMC
Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. J Biomech, Dec. 2000;33(12):1611–1618. 10.1016/S0021-9290(00)00140-8 PubMed
Linetskiy I, Demenko V, Linetska L, Yefremov O. Impact of annual bone loss and different bone quality on dental implant success– A finite element study. Comput Biol Med. Dec. 2017;91:318–325. 10.1016/j.compbiomed.2017.09.016 PubMed
Korabi R, Shemtov-Yona K, Dorogoy A, Rittel D. The Failure Envelope Concept Applied To The Bone-Dental Implant System. Sci Rep. May 2017;7(1):2051. 10.1038/s41598-017-02282-2 PubMed PMC
Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO. The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech. Apr. 1993;26(4):–5, 369–382. 10.1016/0021-9290(93)90001-U PubMed
Marcián P, Wolff J, Horáčková L, Kaiser J, Zikmund T, Borak L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med. Mar. 2018;96. 10.1016/j.compbiomed.2018.03.012. PubMed
Frost H. ‘A 2003 update of bone physiology and Wolff’s Law for clinicians’, Angle Orthod. Mar. 2004;74:3–15. 10.1043/0003-3219(2004)074%3C0003:AUOBPA%3E2.0.CO;2 PubMed
Yamaji T, Ando K, Wolf S, Augat P, Claes L. The effect of micromovement on callus formation. J Orthop Sci. 2001;6:571–5. 10.1007/s007760100014. PubMed
Sun J, Wu L, Fang N, Liu L. IFM calculator: an algorithm for interfragmentary motion calculation in finite element analysis. Comput Methods Programs Biomed. 2024;244:107996. 10.1016/j.cmpb.2023.107996. PubMed
Bethell MA, et al. Complications associated with surgical management of olecranon fractures. JBJS Rev. Mar. 2025;13(3). 10.2106/JBJS.RVW.24.00163. PubMed
Norris BL, Lang G, Russell TA, Rothberg DL, Ricci WM, Borrelli J, editors. Absolute Versus Relative Fracture Fixation: Impact on Fracture Healing. J Orthop Trauma. Mar. 2018;32(3):S12–S16. 10.1097/BOT.0000000000001124 PubMed
Siebenlist S, Torsiglieri T, Kraus T, Burghardt RD, Stöckle U, Lucke M. Comminuted fractures of the proximal ulna—Preliminary results with an anatomically preshaped locking compression plate (LCP) system. Injury. Dec. 2010;41(12):1306–1311. 10.1016/j.injury.2010.08.008 PubMed
Sumanariu CA, Amza CG, Baciu F, Vasile MI, Nicoara AI. Comparative Analysis of Mechanical Properties: Conventional vs. Additive Manufacturing for Stainless Steel 316L. Materials, Sep. 2024;17(19):4808. 10.3390/ma17194808 PubMed PMC
Tyrovola JB, Odont X. The Mechanostat Theory of Frost and the OPG/RANKL/RANK System. J Cell Biochem. Dec. 2015;116(12):2724–2729. 10.1002/jcb.25265 PubMed
Frost HM. ‘Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians’, Angle Orthod. Jun. 1994;64(3):pp. 175–188. 10.1043/0003-3219(1994)064%3C0175:WLABSA%3E2.0.CO;2 PubMed
Perren SM. ‘Evolution of the internal fixation of long bone fractures: The scientific basis of biological internal fixation: choosing a new balance between stability and biology’, J Bone Joint Surg. Nov. 2002;84(8):1093–1110. 10.1302/0301-620X.84B8.13752 PubMed
Claes L, Augat P, Suger G, Wilke H. Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research, Jul. 1997;15(4):577–584. 10.1002/jor.1100150414 PubMed
Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. Mar. 1999;32(3):255–66. 10.1016/S0021-9290(98)00153-5. PubMed
Prendergast PJ, Huiskes R, Søballe K. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech. Jun. 1997;30(6):539–48. 10.1016/S0021-9290(96)00140-6. PubMed
Zhang L, et al. Computational modelling of bone fracture healing under partial weight-bearing exercise. Med Eng Phys. Apr. 2017;42:65–72. 10.1016/j.medengphy.2017.01.025. PubMed
Carrera I, Gelber PE, Chary G, González-Ballester MA, Monllau JC, Noailly J. Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration. Int Orthop. Oct. 2016;40(10):2163–9. 10.1007/s00264-015-3106-y. PubMed
Marcián P, et al. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related Biomechanical problems. J Mech Behav Biomed Mater. May 2021;117:104393. 10.1016/j.jmbbm.2021.104393. PubMed
Jupiter Dringjb, Zilberfarb J, Posterior dislocation of the elbow with, Apr. fractures of the radial head and coronoid. The Journal of Bone and Joint Surgery-American Volume, 2002;84(4):547–551. 10.2106/00004623-200204000-00006 PubMed
Atwan Y, Arguello AM, Barlow JD. ‘Transulnar basal coronoid fractures– Surgical tips and tricks’, JSES Reviews, Reports, and Techniques. Aug. 2024;4(3):632–638. 10.1016/j.xrrt.2024.05.003 PubMed PMC
Closkey RF, Goode JR, Kirschenbaum D, Cody RP. The Role of the Coronoid Process in Elbow Stability. The Journal of Bone and Joint Surgery-American Volume, Dec. 2000;82(12):1749–1753. 10.2106/00004623-200012000-00009 PubMed
Cha SM, Shin HD. Fixation of the Various Coronal Plane Fracture Fragments, Including the Entire Coronoid Process, in Patients with Mayo Type IIB Olecranon Fractures - Four Methods for Fixation. Indian J Orthop. Apr. 2019;53(2):224–231. 10.4103/ortho.IJOrtho_42_17 PubMed PMC