Effect of Elevated Air Humidity on the Structure and Proton Conductivity of Porphyrin-Based Zr(IV)-MOFs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40726122
PubMed Central
PMC12344768
DOI
10.1021/acs.inorgchem.5c02165
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metal-organic frameworks (MOFs) based on Zr6(μ3-O)8 oxometallic clusters are attracting attention as potential proton conductors due to their high surface area, ease of further substitution, and exceptional chemical stability. We hereby present an examination of two Zr(IV)-MOFs with a tetrakis(4-carboxyphenyl)porphyrin (TCPP4-) linker, PCN-222 and PCN-224, as proton conductors. It was found that, in spite of their excellent stability in aqueous suspensions, in the environment of elevated air humidity, serious changes in their bonding system occur, mainly involving breakage of the carboxylate coordination bonds and hydration of the Zr6(μ3-O)8 clusters, which leads to gradual amorphization and loss of porous character. The stability of the structures can be improved by postsynthetic modification with diphenylphosphinic acid (DPPA) to some extent. Inclusion of host imidazole molecules facilitates proton mobility in the pore system of the MOFs, further accelerating the structural degradation. Even though the original structures of the MOFs collapse under the conditions of proton conductivity measurement, the resulting amorphous solids still reveal a proton conductivity up to 6.7 × 10-6 S·cm-1 at ambient temperature and a 92% relative humidity, which is comparable to that of other Zr(IV)-MOFs with well-preserved structures. The presented study demonstrates an important phenomenon that has to be considered with any investigation using MOFs as proton conductors.
Polymer Institute Slovak Academy of Sciences Dúbravská Cesta 9 84541 Bratislava Slovakia
School of Chemistry and Forensic Science University of Kent CT2 7NH Canterbury U K
Zobrazit více v PubMed
Liu S.-S., Liu Q.-Q., Huang S.-Z., Zhang C., Dong X.-Y., Zang S.-Q.. Sulfonic and Phosphonic Porous Solids as Proton Conductors. Coord. Chem. Rev. 2022;451:214241. doi: 10.1016/j.ccr.2021.214241. DOI
Lim D.-W., Kitagawa H.. Rational Strategies for Proton-Conductive Metal–Organic Frameworks. Chem. Soc. Rev. 2021;50:6349–6368. doi: 10.1039/D1CS00004G. PubMed DOI
Ramaswamy P., Matsuda R., Kosaka W., Akiyama G., Jeon H. J., Kitagawa S.. Highly Proton Conductive Nanoporous Coordination Polymers with Sulfonic Acid Groups on the Pore Surface. Chem. Commun. 2014;50:1144–1146. doi: 10.1039/C3CC47980C. PubMed DOI
Wei Y.-S., Hu X.-P., Han Z., Dong X. Y., Zang S. Q., Mak T. C. W.. Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. J. Am. Chem. Soc. 2017;139:3505–3512. doi: 10.1021/jacs.6b12847. PubMed DOI
Shigematsu A., Yamada T., Kitagawa H.. Wide Control of Proton Conductivity in Porous Coordination Polymers. J. Am. Chem. Soc. 2011;133:2034–2036. doi: 10.1021/ja109810w. PubMed DOI
Kloda M., Plecháček T., Ondrušová S., Brázda P., Chalupský P., Rohlíček J., Demel J., Hynek J.. Phosphinate MOFs Formed from Tetratopic Ligands as Proton-Conductive Materials. Inorg. Chem. 2022;61:7506–7512. doi: 10.1021/acs.inorgchem.2c00194. PubMed DOI
Steinke F., Javed A., Wöhlbrandt S., Tiemann M., Stock N.. New Isoreticular Phosphonate MOFs Based on a Tetratopic Linker. Dalton Trans. 2021;50:13572–13579. doi: 10.1039/D1DT02610K. PubMed DOI
Zhang F.-M., Dong L.-Z., Qin J.-S., Guan W., Liu J., Li S.-L., Lu M., Lan Y. Q., Su Z. M., Zhou H. C.. Effect of Imidazole Arrangements on Proton-Conductivity in Metal–Organic Frameworks. J. Am. Chem. Soc. 2017;139:6183–6189. doi: 10.1021/jacs.7b01559. PubMed DOI
Ponomareva V. G., Kovalenko K. A., Chupakhin A. P., Dybtsev D. N., Shutova E. S., Fedin V. P.. Imparting High Proton Conductivity to a Metal–Organic Framework Material by Controlled Acid Impregnation. J. Am. Chem. Soc. 2012;134:15640–15643. doi: 10.1021/ja305587n. PubMed DOI
Taylor J. M., Mah R. K., Moudrakovski I. L., Ratcliffe C. I., Vaidhyanathan R., Shimizu G. K. H.. Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal–Organic Framework. J. Am. Chem. Soc. 2010;132:14055–14057. doi: 10.1021/ja107035w. PubMed DOI
Chen X., Wang S.-Z., Xiao S.-H., Li Z.-F., Li G.. High Protonic Conductivity of Three Highly Stable Nanoscale Hafnium(IV) Metal–Organic Frameworks and Their Imidazole-Loaded Products. Inorg. Chem. 2022;61:4938–4947. doi: 10.1021/acs.inorgchem.1c03679. PubMed DOI
Xie X.-X., Yang Y.-C., Dou B.-H., Li Z.-F., Li G.. Proton Conductive Carboxylate-Based Metal–Organic Frameworks. Coord. Chem. Rev. 2020;403:213100. doi: 10.1016/j.ccr.2019.213100. DOI
Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P.. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008;130:13850–13851. doi: 10.1021/ja8057953. PubMed DOI
Bai Y., Dou Y., Xie L.-H., Rutledge W., Li J.-R., Zhou H.-C.. Zr-Based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016;45:2327–2367. doi: 10.1039/C5CS00837A. PubMed DOI
Chen X., Li G.. Proton Conductive Zr-Based MOFs. Inorg. Chem. Front. 2020;7:3765–3784. doi: 10.1039/D0QI00883D. DOI
Taylor J. M., Dekura S., Ikeda R., Kitagawa H.. Defect Control To Enhance Proton Conductivity in a Metal–Organic Framework. Chem. Mater. 2015;27:2286–2289. doi: 10.1021/acs.chemmater.5b00665. DOI
Phang W. J., Jo H., Lee W. R., Song J. H., Yoo K., Kim B., Hong C. S.. Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation. Angew. Chem., Int. Ed. 2015;54:5142–5146. doi: 10.1002/anie.201411703. PubMed DOI
Yang F., Huang H., Wang X., Li F., Gong Y., Zhong C., Li J.-R.. Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses. Cryst. Growth Des. 2015;15:5827–5833. doi: 10.1021/acs.cgd.5b01190. DOI
Donnadio A., Narducci R., Casciola M., Marmottini F., D’Amato R., Jazestani M., Chiniforoshan H., Costantino F.. Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Appl. Mater. Interfaces. 2017;9:42239–42246. doi: 10.1021/acsami.7b14847. PubMed DOI
Liu S., Yue Z., Liu Y.. Incorporation of Imidazole within the Metal–Organic Framework UiO-67 for Enhanced Anhydrous Proton Conductivity. Dalton Trans. 2015;44:12976–12980. doi: 10.1039/C5DT01667C. PubMed DOI
Mikhailova D., Karakulina O. M., Batuk D., Hadermann J., Abakumov A. M., Herklotz M., Tsirlin A. A., Oswald S., Giebeler L., Schmidt M., Eckert J.. Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion. Inorg. Chem. 2016;55:7079–7089. doi: 10.1021/acs.inorgchem.6b01008. PubMed DOI
Luo H.-B., Ren Q., Wang P., Zhang J., Wang L., Ren X.-M.. High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808. ACS Appl. Mater. Interfaces. 2019;11:9164–9171. doi: 10.1021/acsami.9b01075. PubMed DOI
Sharma A., Lim J., Jeong S., Won S., Seong J., Lee S., Kim Y. S., Baek S. B., Lah M. S.. Superprotonic Conductivity of MOF-808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angew. Chem., Int. Ed. 2021;60:14334–14338. doi: 10.1002/anie.202103191. PubMed DOI
Yang F., Shi R., Huang H., Zhang Z., Guo X., Qiao Z., Zhong C.. Nanochannel Engineering in Metal–Organic Frameworks by Grafting Sulfonic Groups for Boosting Proton Conductivity. ACS Appl. Energy Mater. 2022;5:3235–3241. doi: 10.1021/acsaem.1c03852. DOI
Howarth A. J., Liu Y., Li P., Li Z., Wang T. C., Hupp J. T., Farha O. K.. Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater. 2016;1:15018. doi: 10.1038/natrevmats.2015.18. DOI
Bůžek D., Demel J., Lang K.. Zirconium Metal–Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Inorg. Chem. 2018;57:14290–14297. doi: 10.1021/acs.inorgchem.8b02360. PubMed DOI
Bůžek D., Adamec S., Lang K., Demel J.. Metal–Organic Frameworks vs. Buffers: Case Study of UiO-66 Stability. Inorg. Chem. Front. 2021;8:720–734. doi: 10.1039/D0QI00973C. DOI
Bůžek D., Hynek J., Kloda M., Zlámalová V., Bezdička P., Adamec S., Lang K., Demel J.. Zirconium-Based Metal–Organic Frameworks: The Relation between Linker Connectivity, Structure Stability, and Catalytic Activity towards Organophosphates. Inorg. Chem. Front. 2024;11:5319–5335. doi: 10.1039/D4QI01366B. DOI
Mondloch J. E., Katz M. J., Planas N., Semrouni D., Gagliardi L., Hupp J. T., Farha O. K.. Are Zr6-Based MOFs Water Stable? Linker Hydrolysis vs. Capillary-Force-Driven Channel Collapse. Chem. Commun. 2014;50:8944–8946. doi: 10.1039/C4CC02401J. PubMed DOI
Hynek J., Ondrušová S., Bůžek D., Kovář P., Rathouský J., Demel J.. Postsynthetic Modification of a Zirconium Metal–Organic Framework at the Inorganic Secondary Building Unit with Diphenylphosphinic Acid for Increased Photosensitizing Properties and Stability. Chem. Commun. 2017;53:8557–8560. doi: 10.1039/C7CC05068B. PubMed DOI
Yang X., Li Q.-X., Chi S.-Y., Li H.-F., Huang Y.-B., Cao R.. Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2 . SmartMat. 2022;3:163–172. doi: 10.1002/smm2.1086. DOI
Yang J., Liu S., Sun H., Chen D.. One-Pot Synthesis of Hydrophobic Porphyrin Zirconium-Based MOFs for the Photoreduction of CO2 to Formate. Inorg. Chem. 2025;64:4689–4697. doi: 10.1021/acs.inorgchem.5c00341. PubMed DOI
Feng D., Gu Z.-Y., Li J.-R., Jiang H.-L., Wei Z., Zhou H.-C.. Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew. Chem., Int. Ed. 2012;51:10307–10310. doi: 10.1002/anie.201204475. PubMed DOI
Morris W., Volosskiy B., Demir S., Gándara F., McGrier P. L., Furukawa H., Cascio D., Stoddart J. F., Yaghi O. M.. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks. Inorg. Chem. 2012;51:6443–6445. doi: 10.1021/ic300825s. PubMed DOI
Feng D., Chung W.-C., Wei Z., Gu Z.-Y., Jiang H.-L., Chen Y.-P., Darensbourg D. J., Zhou H.-C.. Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. J. Am. Chem. Soc. 2013;135:17105–17110. doi: 10.1021/ja408084j. PubMed DOI
Kim S., Hong I.. Effects of Humidity and Temperature on a Proton Exchange Membrane Fuel Cell (PEMFC) Stack. J. Ind. Eng. Chem. 2008;14:357–364. doi: 10.1016/j.jiec.2008.01.007. DOI
Kloda M., Ondrušová S., Lang K., Demel J.. Phosphinic Acids as Building Units in Materials Chemistry. Coord. Chem. Rev. 2021;433:213748. doi: 10.1016/j.ccr.2020.213748. DOI
Yeum, B. ZSimpWin; EChem. Software; Ann Arbor: MI, 1999–2013.
Barsoukov, E. ; Macdonald, J. R. . Impedance Spectroscopy, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, 2018.
Accelrys Software Inc. Materials Studio Modeling Environment, Release 4.3 Documentation; Accelrys Software Inc.: San Diego, CA, 2003.
Zee, D. Z. ; Harris, T. D. . CCDC 1992909: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre, 2020.
Rappe A. K., Casewit C. J., Colwell K. S., Goddard W. A. III, Skiff W. M.. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992;114:10024–10035. doi: 10.1021/ja00051a040. DOI
Sun H.. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B. 1998;102:7338–7364. doi: 10.1021/jp980939v. DOI
Rappé A. K., Goddard III W. A.. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991;95:3358–3363. doi: 10.1021/j100161a070. DOI
Wells A., Chaffee A. L.. Ewald Summation for Molecular Simulations. J. Chem. Theory Comput. 2015;11:3684–3695. doi: 10.1021/acs.jctc.5b00093. PubMed DOI
Feng D., Jiang H.-L., Chen Y.-P., Gu Z.-Y., Wei Z., Zhou H. C.. Metal–Organic Frameworks Based on Previously Unknown Zr8/Hf8 Cubic Clusters. Inorg. Chem. 2013;52:12661–12667. doi: 10.1021/ic4018536. PubMed DOI
Koschnick C., Stäglich R., Scholz T., Terban M. W., von Mankowski A., Savasci G., Binder F., Schökel A., Etter M., Nuss J., Siegel R., Germann L. S., Ochsenfeld C., Dinnebier R. E., Senker J., Lotsch B. V.. Understanding Disorder and Linker Deficiency in Porphyrinic Zirconium-Based Metal–Organic Frameworks by Resolving the Zr8O6 Cluster Conundrum in PCN-221. Nat. Commun. 2021;12:3099. doi: 10.1038/s41467-021-23348-w. PubMed DOI PMC
Hnatejko Z., Lis S., Stryła Z.. Preparation and Characterization of Uranyl Complexes with Phosphonate Ligands. J. Therm. Anal. Calorim. 2010;100:253–260. doi: 10.1007/s10973-009-0195-0. DOI
Datar A., Yoon S., Lin L.-C., Chung Y. G.. Brunauer–Emmett–Teller Areas from Nitrogen and Argon Isotherms Are Similar. Langmuir. 2022;38:11631–11640. doi: 10.1021/acs.langmuir.2c01390. PubMed DOI
Smith K., Foglia F., Clancy A. J., Brett D. J. L., Miller T. S.. Nafion Matrix and Ionic Domain Tuning for High-Performance Composite Proton Exchange Membranes. Adv. Funct. Mater. 2023;33:2304061. doi: 10.1002/adfm.202304061. DOI
Romero-Muñiz I., Romero-Muñiz C., del Castillo-Velilla I., Marini C., Calero S., Zamora F., Platero-Prats A. E.. Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr6O8 Metal–Organic Framework Nodes. ACS Appl. Mater. Interfaces. 2022;14:27040–27047. doi: 10.1021/acsami.2c04712. PubMed DOI PMC
Valenzano L., Civalleri B., Chavan S., Bordiga S., Nilsen M. H., Jakobsen S., Lillerud K. P., Lamberti C.. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011;23:1700–1718. doi: 10.1021/cm1022882. DOI
Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Chichester, 2001.
Chen X., Lyu Y., Wang Z., Qiao X., Gates B. C., Yang D.. Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal–Organic Framework Hcp UiO-66. ACS Catal. 2020;10:2906–2914. doi: 10.1021/acscatal.9b04905. DOI
Babucci M., Hoffman A. S., Bare S. R., Gates B. C.. Characterization of a Metal–Organic Framework Zr6O8 Node-Supported Atomically Dispersed Iridium Catalyst for Ethylene Hydrogenation by X-Ray Absorption Near-Edge Structure and Infrared Spectroscopies. J. Phys. Chem. C. 2021;125:16995–17007. doi: 10.1021/acs.jpcc.1c03563. DOI
Wei R., Gaggioli C. A., Li G., Islamoglu T., Zhang Z., Yu P., Farha O. K., Cramer C. J., Gagliardi L., Yang D., Gates B. C.. Tuning the Properties of Zr6O8 Nodes in the Metal–Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chem. Mater. 2019;31:1655–1663. doi: 10.1021/acs.chemmater.8b05037. DOI
Aydin M.. Comparative Study of the Structural and Vibroelectronic Properties of Porphyrin and Its Derivatives. Molecules. 2014;19:20988–21002. doi: 10.3390/molecules191220988. PubMed DOI PMC
Aydin M.. DFT and Raman Spectroscopy of Porphyrin Derivatives: Tetraphenylporphine (TPP) Vib. Spectrosc. 2013;68:141–152. doi: 10.1016/j.vibspec.2013.06.005. DOI
Shearer G. C., Chavan S., Ethiraj J., Vitillo J. G., Svelle S., Olsbye U., Lamberti C., Bordiga S., Lillerud K. P.. Tuned to Perfection: Ironing out the Defects in Metal–Organic Framework UiO-66. Chem. Mater. 2014;26:4068–4071. doi: 10.1021/cm501859p. DOI
Meng X., Wang H.-N., Wang L.-S., Zou Y.-H., Zhou Z.-Y.. Enhanced Proton Conductivity of a MOF-808 Framework through Anchoring Organic Acids to the Zirconium Clusters by Post-Synthetic Modification. CrystEngComm. 2019;21:3146–3150. doi: 10.1039/c9ce00328b. DOI
Luo H., Wang M., Liu S., Xue C., Tian Z., Zou Y., Ren X.. Proton Conductance of a Superior Water-Stable Metal-Organic Framework and Its Composite Membrane with Poly(vinylidene fluoride) Inorg. Chem. 2017;56:4169–4175. doi: 10.1021/acs.inorgchem.7b00122. PubMed DOI