Effect of Elevated Air Humidity on the Structure and Proton Conductivity of Porphyrin-Based Zr(IV)-MOFs

. 2025 Aug 11 ; 64 (31) : 15993-16004. [epub] 20250728

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40726122

Metal-organic frameworks (MOFs) based on Zr6(μ3-O)8 oxometallic clusters are attracting attention as potential proton conductors due to their high surface area, ease of further substitution, and exceptional chemical stability. We hereby present an examination of two Zr(IV)-MOFs with a tetrakis(4-carboxyphenyl)porphyrin (TCPP4-) linker, PCN-222 and PCN-224, as proton conductors. It was found that, in spite of their excellent stability in aqueous suspensions, in the environment of elevated air humidity, serious changes in their bonding system occur, mainly involving breakage of the carboxylate coordination bonds and hydration of the Zr6(μ3-O)8 clusters, which leads to gradual amorphization and loss of porous character. The stability of the structures can be improved by postsynthetic modification with diphenylphosphinic acid (DPPA) to some extent. Inclusion of host imidazole molecules facilitates proton mobility in the pore system of the MOFs, further accelerating the structural degradation. Even though the original structures of the MOFs collapse under the conditions of proton conductivity measurement, the resulting amorphous solids still reveal a proton conductivity up to 6.7 × 10-6 S·cm-1 at ambient temperature and a 92% relative humidity, which is comparable to that of other Zr(IV)-MOFs with well-preserved structures. The presented study demonstrates an important phenomenon that has to be considered with any investigation using MOFs as proton conductors.

Zobrazit více v PubMed

Liu S.-S., Liu Q.-Q., Huang S.-Z., Zhang C., Dong X.-Y., Zang S.-Q.. Sulfonic and Phosphonic Porous Solids as Proton Conductors. Coord. Chem. Rev. 2022;451:214241. doi: 10.1016/j.ccr.2021.214241. DOI

Lim D.-W., Kitagawa H.. Rational Strategies for Proton-Conductive Metal–Organic Frameworks. Chem. Soc. Rev. 2021;50:6349–6368. doi: 10.1039/D1CS00004G. PubMed DOI

Ramaswamy P., Matsuda R., Kosaka W., Akiyama G., Jeon H. J., Kitagawa S.. Highly Proton Conductive Nanoporous Coordination Polymers with Sulfonic Acid Groups on the Pore Surface. Chem. Commun. 2014;50:1144–1146. doi: 10.1039/C3CC47980C. PubMed DOI

Wei Y.-S., Hu X.-P., Han Z., Dong X. Y., Zang S. Q., Mak T. C. W.. Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. J. Am. Chem. Soc. 2017;139:3505–3512. doi: 10.1021/jacs.6b12847. PubMed DOI

Shigematsu A., Yamada T., Kitagawa H.. Wide Control of Proton Conductivity in Porous Coordination Polymers. J. Am. Chem. Soc. 2011;133:2034–2036. doi: 10.1021/ja109810w. PubMed DOI

Kloda M., Plecháček T., Ondrušová S., Brázda P., Chalupský P., Rohlíček J., Demel J., Hynek J.. Phosphinate MOFs Formed from Tetratopic Ligands as Proton-Conductive Materials. Inorg. Chem. 2022;61:7506–7512. doi: 10.1021/acs.inorgchem.2c00194. PubMed DOI

Steinke F., Javed A., Wöhlbrandt S., Tiemann M., Stock N.. New Isoreticular Phosphonate MOFs Based on a Tetratopic Linker. Dalton Trans. 2021;50:13572–13579. doi: 10.1039/D1DT02610K. PubMed DOI

Zhang F.-M., Dong L.-Z., Qin J.-S., Guan W., Liu J., Li S.-L., Lu M., Lan Y. Q., Su Z. M., Zhou H. C.. Effect of Imidazole Arrangements on Proton-Conductivity in Metal–Organic Frameworks. J. Am. Chem. Soc. 2017;139:6183–6189. doi: 10.1021/jacs.7b01559. PubMed DOI

Ponomareva V. G., Kovalenko K. A., Chupakhin A. P., Dybtsev D. N., Shutova E. S., Fedin V. P.. Imparting High Proton Conductivity to a Metal–Organic Framework Material by Controlled Acid Impregnation. J. Am. Chem. Soc. 2012;134:15640–15643. doi: 10.1021/ja305587n. PubMed DOI

Taylor J. M., Mah R. K., Moudrakovski I. L., Ratcliffe C. I., Vaidhyanathan R., Shimizu G. K. H.. Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal–Organic Framework. J. Am. Chem. Soc. 2010;132:14055–14057. doi: 10.1021/ja107035w. PubMed DOI

Chen X., Wang S.-Z., Xiao S.-H., Li Z.-F., Li G.. High Protonic Conductivity of Three Highly Stable Nanoscale Hafnium­(IV) Metal–Organic Frameworks and Their Imidazole-Loaded Products. Inorg. Chem. 2022;61:4938–4947. doi: 10.1021/acs.inorgchem.1c03679. PubMed DOI

Xie X.-X., Yang Y.-C., Dou B.-H., Li Z.-F., Li G.. Proton Conductive Carboxylate-Based Metal–Organic Frameworks. Coord. Chem. Rev. 2020;403:213100. doi: 10.1016/j.ccr.2019.213100. DOI

Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P.. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008;130:13850–13851. doi: 10.1021/ja8057953. PubMed DOI

Bai Y., Dou Y., Xie L.-H., Rutledge W., Li J.-R., Zhou H.-C.. Zr-Based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016;45:2327–2367. doi: 10.1039/C5CS00837A. PubMed DOI

Chen X., Li G.. Proton Conductive Zr-Based MOFs. Inorg. Chem. Front. 2020;7:3765–3784. doi: 10.1039/D0QI00883D. DOI

Taylor J. M., Dekura S., Ikeda R., Kitagawa H.. Defect Control To Enhance Proton Conductivity in a Metal–Organic Framework. Chem. Mater. 2015;27:2286–2289. doi: 10.1021/acs.chemmater.5b00665. DOI

Phang W. J., Jo H., Lee W. R., Song J. H., Yoo K., Kim B., Hong C. S.. Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation. Angew. Chem., Int. Ed. 2015;54:5142–5146. doi: 10.1002/anie.201411703. PubMed DOI

Yang F., Huang H., Wang X., Li F., Gong Y., Zhong C., Li J.-R.. Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses. Cryst. Growth Des. 2015;15:5827–5833. doi: 10.1021/acs.cgd.5b01190. DOI

Donnadio A., Narducci R., Casciola M., Marmottini F., D’Amato R., Jazestani M., Chiniforoshan H., Costantino F.. Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Appl. Mater. Interfaces. 2017;9:42239–42246. doi: 10.1021/acsami.7b14847. PubMed DOI

Liu S., Yue Z., Liu Y.. Incorporation of Imidazole within the Metal–Organic Framework UiO-67 for Enhanced Anhydrous Proton Conductivity. Dalton Trans. 2015;44:12976–12980. doi: 10.1039/C5DT01667C. PubMed DOI

Mikhailova D., Karakulina O. M., Batuk D., Hadermann J., Abakumov A. M., Herklotz M., Tsirlin A. A., Oswald S., Giebeler L., Schmidt M., Eckert J.. Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion. Inorg. Chem. 2016;55:7079–7089. doi: 10.1021/acs.inorgchem.6b01008. PubMed DOI

Luo H.-B., Ren Q., Wang P., Zhang J., Wang L., Ren X.-M.. High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808. ACS Appl. Mater. Interfaces. 2019;11:9164–9171. doi: 10.1021/acsami.9b01075. PubMed DOI

Sharma A., Lim J., Jeong S., Won S., Seong J., Lee S., Kim Y. S., Baek S. B., Lah M. S.. Superprotonic Conductivity of MOF-808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angew. Chem., Int. Ed. 2021;60:14334–14338. doi: 10.1002/anie.202103191. PubMed DOI

Yang F., Shi R., Huang H., Zhang Z., Guo X., Qiao Z., Zhong C.. Nanochannel Engineering in Metal–Organic Frameworks by Grafting Sulfonic Groups for Boosting Proton Conductivity. ACS Appl. Energy Mater. 2022;5:3235–3241. doi: 10.1021/acsaem.1c03852. DOI

Howarth A. J., Liu Y., Li P., Li Z., Wang T. C., Hupp J. T., Farha O. K.. Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater. 2016;1:15018. doi: 10.1038/natrevmats.2015.18. DOI

Bůžek D., Demel J., Lang K.. Zirconium Metal–Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Inorg. Chem. 2018;57:14290–14297. doi: 10.1021/acs.inorgchem.8b02360. PubMed DOI

Bůžek D., Adamec S., Lang K., Demel J.. Metal–Organic Frameworks vs. Buffers: Case Study of UiO-66 Stability. Inorg. Chem. Front. 2021;8:720–734. doi: 10.1039/D0QI00973C. DOI

Bůžek D., Hynek J., Kloda M., Zlámalová V., Bezdička P., Adamec S., Lang K., Demel J.. Zirconium-Based Metal–Organic Frameworks: The Relation between Linker Connectivity, Structure Stability, and Catalytic Activity towards Organophosphates. Inorg. Chem. Front. 2024;11:5319–5335. doi: 10.1039/D4QI01366B. DOI

Mondloch J. E., Katz M. J., Planas N., Semrouni D., Gagliardi L., Hupp J. T., Farha O. K.. Are Zr6-Based MOFs Water Stable? Linker Hydrolysis vs. Capillary-Force-Driven Channel Collapse. Chem. Commun. 2014;50:8944–8946. doi: 10.1039/C4CC02401J. PubMed DOI

Hynek J., Ondrušová S., Bůžek D., Kovář P., Rathouský J., Demel J.. Postsynthetic Modification of a Zirconium Metal–Organic Framework at the Inorganic Secondary Building Unit with Diphenylphosphinic Acid for Increased Photosensitizing Properties and Stability. Chem. Commun. 2017;53:8557–8560. doi: 10.1039/C7CC05068B. PubMed DOI

Yang X., Li Q.-X., Chi S.-Y., Li H.-F., Huang Y.-B., Cao R.. Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2 . SmartMat. 2022;3:163–172. doi: 10.1002/smm2.1086. DOI

Yang J., Liu S., Sun H., Chen D.. One-Pot Synthesis of Hydrophobic Porphyrin Zirconium-Based MOFs for the Photoreduction of CO2 to Formate. Inorg. Chem. 2025;64:4689–4697. doi: 10.1021/acs.inorgchem.5c00341. PubMed DOI

Feng D., Gu Z.-Y., Li J.-R., Jiang H.-L., Wei Z., Zhou H.-C.. Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew. Chem., Int. Ed. 2012;51:10307–10310. doi: 10.1002/anie.201204475. PubMed DOI

Morris W., Volosskiy B., Demir S., Gándara F., McGrier P. L., Furukawa H., Cascio D., Stoddart J. F., Yaghi O. M.. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks. Inorg. Chem. 2012;51:6443–6445. doi: 10.1021/ic300825s. PubMed DOI

Feng D., Chung W.-C., Wei Z., Gu Z.-Y., Jiang H.-L., Chen Y.-P., Darensbourg D. J., Zhou H.-C.. Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. J. Am. Chem. Soc. 2013;135:17105–17110. doi: 10.1021/ja408084j. PubMed DOI

Kim S., Hong I.. Effects of Humidity and Temperature on a Proton Exchange Membrane Fuel Cell (PEMFC) Stack. J. Ind. Eng. Chem. 2008;14:357–364. doi: 10.1016/j.jiec.2008.01.007. DOI

Kloda M., Ondrušová S., Lang K., Demel J.. Phosphinic Acids as Building Units in Materials Chemistry. Coord. Chem. Rev. 2021;433:213748. doi: 10.1016/j.ccr.2020.213748. DOI

Yeum, B. ZSimpWin; EChem. Software; Ann Arbor: MI, 1999–2013.

Barsoukov, E. ; Macdonald, J. R. . Impedance Spectroscopy, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, 2018.

Accelrys Software Inc. Materials Studio Modeling Environment, Release 4.3 Documentation; Accelrys Software Inc.: San Diego, CA, 2003.

Zee, D. Z. ; Harris, T. D. . CCDC 1992909: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre, 2020.

Rappe A. K., Casewit C. J., Colwell K. S., Goddard W. A. III, Skiff W. M.. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992;114:10024–10035. doi: 10.1021/ja00051a040. DOI

Sun H.. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B. 1998;102:7338–7364. doi: 10.1021/jp980939v. DOI

Rappé A. K., Goddard III W. A.. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991;95:3358–3363. doi: 10.1021/j100161a070. DOI

Wells A., Chaffee A. L.. Ewald Summation for Molecular Simulations. J. Chem. Theory Comput. 2015;11:3684–3695. doi: 10.1021/acs.jctc.5b00093. PubMed DOI

Feng D., Jiang H.-L., Chen Y.-P., Gu Z.-Y., Wei Z., Zhou H. C.. Metal–Organic Frameworks Based on Previously Unknown Zr8/Hf8 Cubic Clusters. Inorg. Chem. 2013;52:12661–12667. doi: 10.1021/ic4018536. PubMed DOI

Koschnick C., Stäglich R., Scholz T., Terban M. W., von Mankowski A., Savasci G., Binder F., Schökel A., Etter M., Nuss J., Siegel R., Germann L. S., Ochsenfeld C., Dinnebier R. E., Senker J., Lotsch B. V.. Understanding Disorder and Linker Deficiency in Porphyrinic Zirconium-Based Metal–Organic Frameworks by Resolving the Zr8O6 Cluster Conundrum in PCN-221. Nat. Commun. 2021;12:3099. doi: 10.1038/s41467-021-23348-w. PubMed DOI PMC

Hnatejko Z., Lis S., Stryła Z.. Preparation and Characterization of Uranyl Complexes with Phosphonate Ligands. J. Therm. Anal. Calorim. 2010;100:253–260. doi: 10.1007/s10973-009-0195-0. DOI

Datar A., Yoon S., Lin L.-C., Chung Y. G.. Brunauer–Emmett–Teller Areas from Nitrogen and Argon Isotherms Are Similar. Langmuir. 2022;38:11631–11640. doi: 10.1021/acs.langmuir.2c01390. PubMed DOI

Smith K., Foglia F., Clancy A. J., Brett D. J. L., Miller T. S.. Nafion Matrix and Ionic Domain Tuning for High-Performance Composite Proton Exchange Membranes. Adv. Funct. Mater. 2023;33:2304061. doi: 10.1002/adfm.202304061. DOI

Romero-Muñiz I., Romero-Muñiz C., del Castillo-Velilla I., Marini C., Calero S., Zamora F., Platero-Prats A. E.. Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr6O8 Metal–Organic Framework Nodes. ACS Appl. Mater. Interfaces. 2022;14:27040–27047. doi: 10.1021/acsami.2c04712. PubMed DOI PMC

Valenzano L., Civalleri B., Chavan S., Bordiga S., Nilsen M. H., Jakobsen S., Lillerud K. P., Lamberti C.. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011;23:1700–1718. doi: 10.1021/cm1022882. DOI

Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Chichester, 2001.

Chen X., Lyu Y., Wang Z., Qiao X., Gates B. C., Yang D.. Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal–Organic Framework Hcp UiO-66. ACS Catal. 2020;10:2906–2914. doi: 10.1021/acscatal.9b04905. DOI

Babucci M., Hoffman A. S., Bare S. R., Gates B. C.. Characterization of a Metal–Organic Framework Zr6O8 Node-Supported Atomically Dispersed Iridium Catalyst for Ethylene Hydrogenation by X-Ray Absorption Near-Edge Structure and Infrared Spectroscopies. J. Phys. Chem. C. 2021;125:16995–17007. doi: 10.1021/acs.jpcc.1c03563. DOI

Wei R., Gaggioli C. A., Li G., Islamoglu T., Zhang Z., Yu P., Farha O. K., Cramer C. J., Gagliardi L., Yang D., Gates B. C.. Tuning the Properties of Zr6O8 Nodes in the Metal–Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chem. Mater. 2019;31:1655–1663. doi: 10.1021/acs.chemmater.8b05037. DOI

Aydin M.. Comparative Study of the Structural and Vibroelectronic Properties of Porphyrin and Its Derivatives. Molecules. 2014;19:20988–21002. doi: 10.3390/molecules191220988. PubMed DOI PMC

Aydin M.. DFT and Raman Spectroscopy of Porphyrin Derivatives: Tetraphenylporphine (TPP) Vib. Spectrosc. 2013;68:141–152. doi: 10.1016/j.vibspec.2013.06.005. DOI

Shearer G. C., Chavan S., Ethiraj J., Vitillo J. G., Svelle S., Olsbye U., Lamberti C., Bordiga S., Lillerud K. P.. Tuned to Perfection: Ironing out the Defects in Metal–Organic Framework UiO-66. Chem. Mater. 2014;26:4068–4071. doi: 10.1021/cm501859p. DOI

Meng X., Wang H.-N., Wang L.-S., Zou Y.-H., Zhou Z.-Y.. Enhanced Proton Conductivity of a MOF-808 Framework through Anchoring Organic Acids to the Zirconium Clusters by Post-Synthetic Modification. CrystEngComm. 2019;21:3146–3150. doi: 10.1039/c9ce00328b. DOI

Luo H., Wang M., Liu S., Xue C., Tian Z., Zou Y., Ren X.. Proton Conductance of a Superior Water-Stable Metal-Organic Framework and Its Composite Membrane with Poly­(vinylidene fluoride) Inorg. Chem. 2017;56:4169–4175. doi: 10.1021/acs.inorgchem.7b00122. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...