Assessment of peripheral blood DNA methylation signatures as pharmacodynamic and predictive biomarkers during azacitidine therapy in juvenile myelomonocytic leukaemia: Results of the EWOG-MESRAT study

. 2025 Oct ; 207 (4) : 1271-1278. [epub] 20250731

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40740143

Grantová podpora
Joachim Herz Stiftung
CRC 992-C05 Deutsche Forschungsgemeinschaft
SPP1463 FL345/4-2 Deutsche Forschungsgemeinschaft

EWOG-MESRAT (European Working Group-Methylation Signatures and Response to Azacitidine Therapy; DRKS00007185) is an investigator-initiated trial that studied EPIC array-based DNA methylation patterns and next generation sequencing (NGS)-based variant allele frequencies (VAFs) of driver mutations in peripheral blood (PB) and bone marrow (BM) of 11 patients with newly diagnosed juvenile myelomonocytic leukaemia (JMML) during therapy with azacitidine. We demonstrate that the pharmacodynamic activity of azacitidine can efficiently be monitored in PB and BM. DNA methylation subgroup classification was linked to clinical response after three cycles of azacitidine and found to be conserved between PB and BM in all patients. In contrast, neither changes in VAFs nor changes in DNA methylation patterns during the course of therapy correlated with therapy outcome among the 11 study patients. This work thus supports the value of DNA methylation subgroup classification from PB samples for response prediction of single-agent azacitidine in patients with JMML.

Bristol Myers Squibb Summit New Jersey USA

Department of Paediatric Hematology and Oncology Charles University and University Hospital Motol Prague Czech Republic

Department of Paediatrics and Adolescent Medicine Copenhagen University Hospital Rigshospitalet Copenhagen Denmark

Department of Pediatric Hematology and Oncology Faculty of Medicine Children's Hospital Medical Center University of Freiburg Freiburg Germany

Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesu Rome Italy

Department of Pediatric Hematology and Oncology University Children's Hospital Münster Münster Germany

Department of Pediatrics and Adolescent Medicine University Medical Center Ulm Ulm Germany

Department of Pediatrics Catholic University of the Sacred Heart Rome Italy

Department of Pediatrics Frankfurt University Hospital Frankfurt Germany

Faculty of Medicine Institute of Medical Bioinformatics and Systems Medicine Medical Center University of Freiburg Freiburg Germany

German Cancer Consortium DKFZ Core Center Heidelberg Heidelberg Germany

German Cancer Consortium Partner Site Frankfurt Frankfurt Germany

German Cancer Consortium Partner Site Freiburg a Partnership between DKFZ and University Medical Center Freiburg Freiburg Germany

National Center for Tumor Diseases NCT Heidelberg a Partnership between DKFZ and Heidelberg University Hospital Heidelberg Germany

Pediatric Hematology Oncology Fondazione IRCCS Policlinico San Matteo Pavia Italy

Section of Translational Cancer Epigenomics Division of Translational Medical Oncology German Cancer Research Center Heidelberg Germany

Zobrazit více v PubMed

Niemeyer CM, Flotho C. Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood. 2019;133(10):1060–1070. PubMed

Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG‐MDS/EBMT trial. Blood. 2005;105(1):410–419. PubMed

Bergstraesser E, Hasle H, Rogge T, Fischer A, Zimmermann M, Noellke P, et al. Non‐hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer. 2007;49(5):629–633. PubMed

Hecht A, Meyer J, Chehab FF, White KL, Magruder K, Dvorak CC, et al. Molecular assessment of pretransplant chemotherapy in the treatment of juvenile myelomonocytic leukemia. Pediatr Blood Cancer. 2019;66(11):e27948. PubMed PMC

Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93. PubMed

Schermelleh L, Spada F, Easwaran HP, Zolghadr K, Margot JB, Cardoso MC, et al. Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods. 2005;2(10):751–756. PubMed

Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–986. PubMed PMC

Scheller M, Ludwig AK, Gollner S, Rohde C, Kramer S, Stable S, et al. Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nat Can. 2021;2(5):527–544. PubMed

Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD. Epigenetic therapy in immune‐oncology. Nat Rev Cancer. 2019;19(3):151–161. PubMed

Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69(20):8127–8132. PubMed

Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, et al. 5‐Azacitidine induces NOXA to prime AML cells for venetoclax‐mediated apoptosis. Clin Cancer Res. 2020;26(13):3371–3383. PubMed

Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Gotze KS. A clinical‐molecular update on azanucleoside‐based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:71. PubMed PMC

Furlan I, Batz C, Flotho C, Mohr B, Lubbert M, Suttorp M, et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood. 2009;113(12):2867–2868. PubMed

Cseh A, Niemeyer CM, Yoshimi A, Dworzak M, Hasle H, van den Heuvel‐Eibrink MM, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG‐MDS study group. Blood. 2015;125(14):2311–2313. PubMed

Niemeyer CM, Flotho C, Lipka DB, Stary J, Rossig C, Baruchel A, et al. Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA‐JMML‐001 trial. Blood Adv. 2021;5(14):2901–2908. PubMed PMC

Schönung M, Meyer J, Nollke P, Olshen AB, Hartmann M, Murakami N, et al. International consensus definition of DNA methylation subgroups in juvenile myelomonocytic leukemia. Clin Cancer Res. 2021;27(1):158–168. PubMed PMC

Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11(11):1138–1140. PubMed PMC

Muller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lengauer T, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 2019;20(1):55. PubMed PMC

R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2018. [cited 2025 May 27]. Available from: https://cran.r‐project.org/

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. PubMed PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. PubMed PMC

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–576. PubMed PMC

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. PubMed PMC

Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG‐AMP guidelines. Am J Hum Genet. 2017;100(2):267–280. PubMed PMC

Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly (Austin). 2012;6(2):80–92. PubMed PMC

Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nollke P, et al. RAS‐pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2126. PubMed PMC

Stieglitz E, Taylor‐Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326–1333. PubMed PMC

DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–629. PubMed

Cseh AM, Niemeyer CM, Yoshimi A, Catala A, Fruhwald MC, Hasle H, et al. Therapy with low‐dose azacitidine for MDS in children and young adults: a retrospective analysis of the EWOG‐MDS study group. Br J Haematol. 2016;172(6):930–936. PubMed

Waespe N, Van Den Akker M, Klaassen RJ, Lieberman L, Irwin MS, Ali SS, et al. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica. 2016;101(12):1508–1515. PubMed PMC

Takebayashi A, Yamamoto M, Igarashi K, Muramatsu H, Kawasaki Y. Azacitidine as a bridge to transplantation in juvenile myelomonocytic leukemia. Pediatr Int. 2022;64(1):e14929. PubMed

Honda Y, Muramatsu H, Nanjo Y, Hirabayashi S, Meguro T, Yoshida N, et al. A retrospective analysis of azacitidine treatment for juvenile myelomonocytic leukemia. Int J Hematol. 2022;115(2):263–268. PubMed

Stieglitz E, Mazor T, Olshen AB, Geng H, Gelston LC, Akutagawa J, et al. Genome‐wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2127. PubMed PMC

Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB, et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest. 2015;125(5):1857–1872. PubMed PMC

Cabezon M, Malinverni R, Bargay J, Xicoy B, Marce S, Garrido A, et al. Different methylation signatures at diagnosis in patients with high‐risk myelodysplastic syndromes and secondary acute myeloid leukemia predict azacitidine response and longer survival. Clin Epigenetics. 2021;13(1):9. PubMed PMC

Schmutz M, Zucknick M, Schlenk RF, Mertens D, Benner A, Weichenhan D, et al. Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen. Clin Epigenetics. 2023;15(1):171. PubMed PMC

Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–2036. PubMed PMC

Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine. 2018;31:174–181. PubMed PMC

Short NJ, Kantarjian HM, Loghavi S, Huang X, Qiao W, Borthakur G, et al. Treatment with a 5‐day versus a 10‐day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematol. 2019;6(1):e29–e37. PubMed PMC

Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...