Assessment of peripheral blood DNA methylation signatures as pharmacodynamic and predictive biomarkers during azacitidine therapy in juvenile myelomonocytic leukaemia: Results of the EWOG-MESRAT study
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Joachim Herz Stiftung
CRC 992-C05
Deutsche Forschungsgemeinschaft
SPP1463 FL345/4-2
Deutsche Forschungsgemeinschaft
PubMed
40740143
PubMed Central
PMC12512093
DOI
10.1111/bjh.70046
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, JMML, azacitidine, epigenetics,
- MeSH
- azacytidin * terapeutické užití farmakologie aplikace a dávkování farmakokinetika MeSH
- dítě MeSH
- juvenilní myelomonocytární leukemie * farmakoterapie genetika krev MeSH
- kojenec MeSH
- lidé MeSH
- metylace DNA * účinky léků MeSH
- nádorové biomarkery * krev genetika MeSH
- předškolní dítě MeSH
- protinádorové antimetabolity * terapeutické užití farmakologie MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azacytidin * MeSH
- nádorové biomarkery * MeSH
- protinádorové antimetabolity * MeSH
EWOG-MESRAT (European Working Group-Methylation Signatures and Response to Azacitidine Therapy; DRKS00007185) is an investigator-initiated trial that studied EPIC array-based DNA methylation patterns and next generation sequencing (NGS)-based variant allele frequencies (VAFs) of driver mutations in peripheral blood (PB) and bone marrow (BM) of 11 patients with newly diagnosed juvenile myelomonocytic leukaemia (JMML) during therapy with azacitidine. We demonstrate that the pharmacodynamic activity of azacitidine can efficiently be monitored in PB and BM. DNA methylation subgroup classification was linked to clinical response after three cycles of azacitidine and found to be conserved between PB and BM in all patients. In contrast, neither changes in VAFs nor changes in DNA methylation patterns during the course of therapy correlated with therapy outcome among the 11 study patients. This work thus supports the value of DNA methylation subgroup classification from PB samples for response prediction of single-agent azacitidine in patients with JMML.
Bristol Myers Squibb Summit New Jersey USA
Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesu Rome Italy
Department of Pediatrics and Adolescent Medicine University Medical Center Ulm Ulm Germany
Department of Pediatrics Catholic University of the Sacred Heart Rome Italy
Department of Pediatrics Frankfurt University Hospital Frankfurt Germany
German Cancer Consortium DKFZ Core Center Heidelberg Heidelberg Germany
German Cancer Consortium Partner Site Frankfurt Frankfurt Germany
Pediatric Hematology Oncology Fondazione IRCCS Policlinico San Matteo Pavia Italy
Zobrazit více v PubMed
Niemeyer CM, Flotho C. Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood. 2019;133(10):1060–1070. PubMed
Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG‐MDS/EBMT trial. Blood. 2005;105(1):410–419. PubMed
Bergstraesser E, Hasle H, Rogge T, Fischer A, Zimmermann M, Noellke P, et al. Non‐hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer. 2007;49(5):629–633. PubMed
Hecht A, Meyer J, Chehab FF, White KL, Magruder K, Dvorak CC, et al. Molecular assessment of pretransplant chemotherapy in the treatment of juvenile myelomonocytic leukemia. Pediatr Blood Cancer. 2019;66(11):e27948. PubMed PMC
Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93. PubMed
Schermelleh L, Spada F, Easwaran HP, Zolghadr K, Margot JB, Cardoso MC, et al. Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods. 2005;2(10):751–756. PubMed
Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–986. PubMed PMC
Scheller M, Ludwig AK, Gollner S, Rohde C, Kramer S, Stable S, et al. Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nat Can. 2021;2(5):527–544. PubMed
Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD. Epigenetic therapy in immune‐oncology. Nat Rev Cancer. 2019;19(3):151–161. PubMed
Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69(20):8127–8132. PubMed
Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, et al. 5‐Azacitidine induces NOXA to prime AML cells for venetoclax‐mediated apoptosis. Clin Cancer Res. 2020;26(13):3371–3383. PubMed
Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Gotze KS. A clinical‐molecular update on azanucleoside‐based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:71. PubMed PMC
Furlan I, Batz C, Flotho C, Mohr B, Lubbert M, Suttorp M, et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood. 2009;113(12):2867–2868. PubMed
Cseh A, Niemeyer CM, Yoshimi A, Dworzak M, Hasle H, van den Heuvel‐Eibrink MM, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG‐MDS study group. Blood. 2015;125(14):2311–2313. PubMed
Niemeyer CM, Flotho C, Lipka DB, Stary J, Rossig C, Baruchel A, et al. Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA‐JMML‐001 trial. Blood Adv. 2021;5(14):2901–2908. PubMed PMC
Schönung M, Meyer J, Nollke P, Olshen AB, Hartmann M, Murakami N, et al. International consensus definition of DNA methylation subgroups in juvenile myelomonocytic leukemia. Clin Cancer Res. 2021;27(1):158–168. PubMed PMC
Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11(11):1138–1140. PubMed PMC
Muller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lengauer T, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 2019;20(1):55. PubMed PMC
R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2018. [cited 2025 May 27]. Available from: https://cran.r‐project.org/
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. PubMed PMC
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–576. PubMed PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. PubMed PMC
Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG‐AMP guidelines. Am J Hum Genet. 2017;100(2):267–280. PubMed PMC
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly (Austin). 2012;6(2):80–92. PubMed PMC
Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nollke P, et al. RAS‐pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2126. PubMed PMC
Stieglitz E, Taylor‐Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326–1333. PubMed PMC
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–629. PubMed
Cseh AM, Niemeyer CM, Yoshimi A, Catala A, Fruhwald MC, Hasle H, et al. Therapy with low‐dose azacitidine for MDS in children and young adults: a retrospective analysis of the EWOG‐MDS study group. Br J Haematol. 2016;172(6):930–936. PubMed
Waespe N, Van Den Akker M, Klaassen RJ, Lieberman L, Irwin MS, Ali SS, et al. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica. 2016;101(12):1508–1515. PubMed PMC
Takebayashi A, Yamamoto M, Igarashi K, Muramatsu H, Kawasaki Y. Azacitidine as a bridge to transplantation in juvenile myelomonocytic leukemia. Pediatr Int. 2022;64(1):e14929. PubMed
Honda Y, Muramatsu H, Nanjo Y, Hirabayashi S, Meguro T, Yoshida N, et al. A retrospective analysis of azacitidine treatment for juvenile myelomonocytic leukemia. Int J Hematol. 2022;115(2):263–268. PubMed
Stieglitz E, Mazor T, Olshen AB, Geng H, Gelston LC, Akutagawa J, et al. Genome‐wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2127. PubMed PMC
Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB, et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest. 2015;125(5):1857–1872. PubMed PMC
Cabezon M, Malinverni R, Bargay J, Xicoy B, Marce S, Garrido A, et al. Different methylation signatures at diagnosis in patients with high‐risk myelodysplastic syndromes and secondary acute myeloid leukemia predict azacitidine response and longer survival. Clin Epigenetics. 2021;13(1):9. PubMed PMC
Schmutz M, Zucknick M, Schlenk RF, Mertens D, Benner A, Weichenhan D, et al. Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen. Clin Epigenetics. 2023;15(1):171. PubMed PMC
Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–2036. PubMed PMC
Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine. 2018;31:174–181. PubMed PMC
Short NJ, Kantarjian HM, Loghavi S, Huang X, Qiao W, Borthakur G, et al. Treatment with a 5‐day versus a 10‐day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematol. 2019;6(1):e29–e37. PubMed PMC
Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767. PubMed PMC