Decoding corporate communication strategies: Analysing mandatory published information under Pillar 3 across turbulent periods with unsupervised machine learning
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40743129
PubMed Central
PMC12312947
DOI
10.1371/journal.pone.0328841
PII: PONE-D-24-48948
Knihovny.cz E-zdroje
- MeSH
- COVID-19 epidemiologie MeSH
- komunikace * MeSH
- lidé MeSH
- strojové učení bez učitele * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This study explores the communication patterns of Slovak banks with stakeholders through mandatory disclosures mandated by Basel III's Pillar 3 framework and annual reports in 2007-2022. Our primary objective is to identify key topics communicated by banks and analysing the sentiment of this communication during turbulent periods (i.e., alternating periods of stability and crisis) in 2007-2022. Textual data was collected from Pillar 3 disclosures, annual reports, and additional regulatory reports. A hybrid model was developed to extract the most important keywords from each collected document chapter. This hybrid model (model combining multiple approaches) combines elements of statistical approaches to keyword extraction, (keyword frequency dictionary), linguistic approaches (pair-of-speech tagging in order to select noun-phrases), and machine-learning based approaches (BERT) to extract meaningful keywords. Subsequently, a sentiment analysis was performed on the extracted keywords using a Loughran-McDonald lexicon (list of words labelled with sentiment) specially designed for financial texts. Based on the adjusted univariate results, we can reject the global null hypothesis of independence of the sentiment category of keywords from time for negative sentiment at p = 0.0000 for positive sentiment at p = 0.0005, and for neutral sentiment at p = 0.0000 significant level. The multilevel comparison revealed that negative sentiment was most frequent during the global financial crisis and the COVID-19 pandemic, likely impacting stakeholder confidence and trust. Conversely, positive sentiment dominated during periods of financial stability, potentially enhancing stakeholder satisfaction and investment decisions. This research points out that the sentiment of the selected commercial bank documents changes depending on the years. A commercial bank can use this knowledge and include sentiment information as predictors when modelling financial distress. For bank management of selected commercial bank the examined documents are an important communication tool, the wording of which can have a significant impact on stakeholder behaviour towards the bank, their styling is very important.
Comenius University in Bratislava Bratislava Slovakia
Department of Computer Science Constantine the Philosopher University in Nitra Nitra Slovakia
Science and Research Centre University of Pardubice Pardubice Czech Republic
Zobrazit více v PubMed
Munk M, Pilkova A, Benko L, Blažeková P. Pillar 3: market discipline of the key stakeholders in cee commercial bank and turbulent times. Journal of Business Economics and Management. 2017;18(5):954–73. doi: 10.3846/16111699.2017.1360388 DOI
Pilková A, Munk M, Benko Ľ, Blažeková P, Kapusta J. Pillar 3: Does banking regulation support stakeholders’ interest in banks financial and risk profile? PLoS One. 2021;16(10):e0258449. doi: 10.1371/journal.pone.0258449 PubMed DOI PMC
Nopp C, Hanbury A. Detecting Risks in the Banking System by Sentiment Analysis. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics; 2015. p. 591–600. doi: 10.18653/v1/D15-1071 DOI
Correa R, Garud K, Londono JM, Mislang N. Sentiment in Central Bank’s Financial Stability Reports. Internationalfinance. 2017;2017.0(1203):1–46. doi: 10.17016/ifdp.2017.1203 DOI
Dong M, Jondeau E, Rockinger GM. Textual Analysis of Banks’ Pillar 3 Documents. SSRN Journal. 2019. doi: 10.2139/ssrn.3365005 DOI
Kubaščíková Z, Tumpach M, Juhászová, Zuzana. Contextual non-financial information analysis of annual reports. 2021.
Kubaščíková Z, Juhászová Z, Tumpach. Annual Reports Non-Financial Textual Analysis. Prague; 2021.
Kubaščíková Z, Tumpach M, Juhászová Z, Zeytinoglu E, Chyzhevska L. Contextual Non-financial Analysis of Annual Reports of Slovak, Turkish and Ukrainian Companies. SHS Web of Conf. 2021;92:02033. doi: 10.1051/shsconf/20219202033 DOI
Sharma P, Li Y. Self-Supervised Contextual Keyword and Keyphrase Retrieval with Self-Labelling. Mathematics & Computer Science. 2019. doi: 10.20944/preprints201908.0073.v1 DOI
El-Beltagy SR, Rafea A. KP-Miner: A keyphrase extraction system for English and Arabic documents. Information Systems. 2009;34(1):132–44. doi: 10.1016/j.is.2008.05.002 DOI
Campos R, Mangaravite V, Pasquali A, Jorge A, Nunes C, Jatowt A. YAKE! Keyword extraction from single documents using multiple local features. Information Sciences. 2020;509:257–89. doi: 10.1016/j.ins.2019.09.013 DOI
Pasi G. Advances in Information Retrieval: 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings. Cham: Springer International Publishing; AG; 2018.
Rose S, Engel D, Cramer N, Cowley W. Automatic Keyword Extraction from Individual Documents. 1st ed. In: Berry MW, Kogan J, editors. Text Mining. 1st ed. Wiley; 2010. p. 1–20. doi: 10.1002/9780470689646.ch1 DOI
Mehrabi E, Mohebi A, Ahmadi A. Improved Keyword Extraction for Persian Academic Texts Using RAKE Algorithm; Case Study: Persian Theses and Dissertations. jipm. 2021;37(1):197–228. doi: 10.52547/jipm.37.1.197 DOI
Zhang L, Wang W, Ma J, Wen Y. IWF-TextRank Keyword Extraction Algorithm Modelling. Applied Sciences. 2024;14(22):10657. doi: 10.3390/app142210657 DOI
Zhang M, Li X, Yue S, Yang L. An Empirical Study of TextRank for Keyword Extraction. IEEE Access. 2020;8:178849–58. doi: 10.1109/access.2020.3027567 DOI
Bennani-Smires K, Musat C, Hossmann A, Baeriswyl M, Jaggi M. Simple Unsupervised Keyphrase Extraction using Sentence Embeddings. arXiv; 2018. doi: 10.48550/ARXIV.1801.04470 DOI
Huang Q. Research on Keywords Extraction of Film Reviews Based on the KeyBERT Model. TCSISR. 2024;5:732–8. doi: 10.62051/1zpndy68 DOI
Zhang J. Hotel review analysis based on LDA model and KeyBert model. TE. 2024;1(8). doi: 10.61173/rqsp2623 DOI
Sun Y, Qiu H, Zheng Y, Wang Z, Zhang C. SIFRank: A New Baseline for Unsupervised Keyphrase Extraction Based on Pre-Trained Language Model. IEEE Access. 2020;8:10896–906. doi: 10.1109/access.2020.2965087 DOI
Joseph J, Vineetha S, Sobhana NV. A survey on deep learning based sentiment analysis. Materials Today: Proceedings. 2022;58:456–60. doi: 10.1016/j.matpr.2022.02.483 DOI
Karanikola A, Davrazos G, Liapis CM, Kotsiantis S. Financial sentiment analysis: Classic methods vs. deep learning models. IDT. 2023;17(4):893–915. doi: 10.3233/idt-230478 DOI
Araci D. FinBERT: Financial sentiment analysis with pre-trained language models. arXiv. 2019. doi: 10.48550/ARXIV.1908.10063 DOI
Kelebercová L, Zozuk NČ. Sentiment classification of annual reports in Slovak language using symbolic, subsymbolic and statistic methods. Procedia Computer Science. 2023;225:3508–16. doi: 10.1016/j.procs.2023.10.346 DOI
Bodnaruk A, Loughran T, McDonald B. Using 10-K Text to Gauge Financial Constraints. SSRN Journal. 2013. doi: 10.2139/ssrn.2331544 DOI
Loughran T, McDonald B. Measuring Firm Complexity. SSRN Journal. 2020. doi: 10.2139/ssrn.3645372 DOI
Yang Y, Zhang K, Fan Y. Analyzing Firm Reports for Volatility Prediction: A Knowledge-Driven Text-Embedding Approach. INFORMS Journal on Computing. 2022;34(1):522–40. doi: 10.1287/ijoc.2020.1046 DOI
Li X, Wu P, Wang W. Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong. Information Processing & Management. 2020;57(5):102212. doi: 10.1016/j.ipm.2020.102212 DOI
Mullings R. Do central bank sentiment shocks affect liquidity within the European Monetary Union? A computational linguistics approach. The European Journal of Finance. 2022;29(12):1355–81. doi: 10.1080/1351847x.2022.2124530 DOI
Taylor-Neu K, Rahaman AS, Saxton GD, Neu D. Tone at the top, corporate irresponsibility and the Enron emails. AAAJ. 2024;37: 336–64. doi: 10.1108/AAAJ-12-2023-6792 DOI
Tetlock PC, Saar‐Tsechansky M, Macskassy S. More Than Words: Quantifying Language to Measure Firms’ Fundamentals. The Journal of Finance. 2008;63(3):1437–67. doi: 10.1111/j.1540-6261.2008.01362.x DOI
Stone P, Dunphy D, Smith M, Ogilvie D. The General Inquirer: A Computer Approach to Content Analysis. MIT Press; 1966.
Consoli S, Barbaglia L, Manzan S. Fine-Grained, Aspect-Based Sentiment Analysis on Economic and Financial Lexicon. SSRN Journal. 2021. doi: 10.2139/ssrn.3766194 DOI
Bos T, Frasincar F. Automatically Building Financial Sentiment Lexicons While Accounting for Negation. Cogn Comput. 2021;14(1):442–60. doi: 10.1007/s12559-021-09833-w DOI
Rizinski M, Peshov H, Mishev K, Jovanovik M, Trajanov D. Sentiment Analysis in Finance: From Transformers Back to eXplainable Lexicons (XLex). IEEE Access. 2024;12:7170–98. doi: 10.1109/access.2024.3349970 DOI
Park J, Lee HJ, Cho S. Automatic construction of context-aware sentiment lexicon in the financial domain using direction-dependent words. arXiv. 2021. doi: 10.48550/ARXIV.2106.05723 DOI
Vine S. Pdfplumber. 2023. Available: https://github.com/jsvine/pdfplumber
Qi P, Zhang Y, Zhang Y, Bolton J, Manning CD. Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. arXiv. 2020. doi: 10.48550/ARXIV.2003.07082 DOI
Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv; 2018. doi: 10.48550/ARXIV.1810.04805 DOI
Conneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, et al. Unsupervised Cross-lingual Representation Learning at Scale. arXiv; 2019. doi: 10.48550/ARXIV.1911.02116 DOI
Pikuliak M, Grivalský Š, Konôpka M, Blšták M, Tamajka M, Bachratý V, et al. SlovakBERT: Slovak Masked Language Model. arXiv; 2021. doi: 10.48550/ARXIV.2109.15254 DOI