Anticoronavirus Activity of Uridine Glycoconjugates Containing a 1,2,3-Triazole Moiety
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40778743
PubMed Central
PMC12406196
DOI
10.1021/acs.jmedchem.5c01602
Knihovny.cz E-zdroje
- MeSH
- antivirové látky * farmakologie chemie chemická syntéza MeSH
- Cercopithecus aethiops MeSH
- farmakoterapie COVID-19 MeSH
- glykokonjugáty * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- myši MeSH
- replikace viru účinky léků MeSH
- SARS-CoV-2 účinky léků MeSH
- triazoly * chemie farmakologie MeSH
- uridin * farmakologie chemie analogy a deriváty MeSH
- Vero buňky MeSH
- virus myší hepatitidy účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- glykokonjugáty * MeSH
- triazoly * MeSH
- uridin * MeSH
Coronaviruses can spread rapidly to new host species and cause severe respiratory and enteric diseases in vertebrates, including humans. To date, seven coronaviruses have been identified in humans, with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being the most notorious due to its substantial social and economic impact. Although anti-SARS-CoV-2 vaccines are available, infections remain widespread, highlighting the ongoing need for antiviral treatments. Here, we report the synthesis and evaluation of the activity of uridine glycoconjugates, designed as glycosyltransferase donor-type inhibitors incorporating a 1,2,3-triazole moiety. These compounds were tested against two model coronaviruses: murine hepatitis virus strain A59 (MHV) and human coronavirus strain NL63 (HCoV-NL63). Four of the synthesized compounds demonstrated strong antiviral activity against both viruses, and their efficacy was further confirmed against SARS-CoV-2. Our results suggest that these compounds interfere with the coronavirus infectivity and replication process. Thus, these novel compounds may prove to be effective broad-spectrum antiviral inhibitors.
Zobrazit více v PubMed
van der Hoek L.. Human Coronaviruses: What Do They Cause? Antivir. Ther. 2007;12(4 Pt B):651–658. doi: 10.1177/135965350701200S01.1. PubMed DOI
Woo P. C. Y., Lau S. K. P., Huang Y., Yuen K.-Y.. Coronavirus Diversity, Phylogeny and Interspecies Jumping. Exp. Biol. Med. Maywood NJ. 2009;234(10):1117–1127. doi: 10.3181/0903-MR-94. PubMed DOI
V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V.. Coronavirus Biology and Replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19(3):155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC
Körner R., Majjouti M., Alcazar M. A. A., Mahabir E.. Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-CoV-2. Viruses. 2020;12(8):880. doi: 10.3390/v12080880. PubMed DOI PMC
Agostini M. L., Andres E. L., Sims A. C., Graham R. L., Sheahan T. P., Lu X., Smith E. C., Case J. B., Feng J. Y., Jordan R., Ray A. S., Cihlar T., Siegel D., Mackman R. L., Clarke M. O., Baric R. S., Denison M. R.. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9(2):e00221–18. doi: 10.1128/mBio.00221-18. PubMed DOI PMC
van der Hoek L., Pyrc K., Berkhout B.. Human Coronavirus NL63, a New Respiratory Virus. FEMS Microbiol. Rev. 2006;30(5):760–773. doi: 10.1111/j.1574-6976.2006.00032.x. PubMed DOI PMC
Milewska A., Ciejka J., Kaminski K., Karewicz A., Bielska D., Zeglen S., Karolak W., Nowakowska M., Potempa J., Bosch B. J., Pyrc K., Szczubialka K.. Novel Polymeric Inhibitors of HCoV-NL63. Antiviral Res. 2013;97(2):112–121. doi: 10.1016/j.antiviral.2012.11.006. PubMed DOI PMC
Milewska A., Chi Y., Szczepanski A., Barreto-Duran E., Dabrowska A., Botwina P., Obloza M., Liu K., Liu D., Guo X., Ge Y., Li J., Cui L., Ochman M., Urlik M., Rodziewicz-Motowidlo S., Zhu F., Szczubialka K., Nowakowska M., Pyrc K.. HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV. J. Virol. 2021;95(4):e01622–20. doi: 10.1128/JVI.01622-20. PubMed DOI PMC
Barghash R. F., Gemmati D., Awad A. M., Elbakry M. M. M., Tisato V., Awad K., Singh A. V.. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Mol. Basel Switz. 2024;29(23):5564. doi: 10.3390/molecules29235564. PubMed DOI PMC
Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A., Horzinek M. C., Spaan W. J.. Primary Structure of the Glycoprotein E2 of Coronavirus MHV-A59 and Identification of the Trypsin Cleavage Site. Virology. 1987;161(2):479–487. doi: 10.1016/0042-6822(87)90142-5. PubMed DOI PMC
Walls A. C., Tortorici M. A., Frenz B., Snijder J., Li W., Rey F. A., DiMaio F., Bosch B.-J., Veesler D.. Glycan Shield and Epitope Masking of a Coronavirus Spike Protein Observed by Cryo-Electron Microscopy. Nat. Struct. Mol. Biol. 2016;23(10):899–905. doi: 10.1038/nsmb.3293. PubMed DOI PMC
Fung T. S., Liu D. X.. Post-Translational Modifications of Coronavirus Proteins: Roles and Function. Future Virol. 2018;13(6):405–430. doi: 10.2217/fvl-2018-0008. PubMed DOI PMC
Walls A. C., Park Y.-J., Tortorici M. A., Wall A., McGuire A. T., Veesler D.. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;183(6):1735. doi: 10.1016/j.cell.2020.11.032. PubMed DOI PMC
Watanabe Y., Allen J. D., Wrapp D., McLellan J. S., Crispin M.. Site-Specific Glycan Analysis of the SARS-CoV-2 Spike. Science. 2020;369(6501):330–333. doi: 10.1126/science.abb9983. PubMed DOI PMC
Ramírez Hernández E., Hernández-Zimbrón L. F., Martínez Zúñiga N., Leal-García J. J., Ignacio Hernández V., Ucharima-Corona L. E., Pérez Campos E., Zenteno E.. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Viral Immunol. 2021;34(3):165–173. doi: 10.1089/vim.2020.0174. PubMed DOI
Breton C., Fournel-Gigleux S., Palcic M. M.. Recent Structures, Evolution and Mechanisms of Glycosyltransferases. Curr. Opin. Struct. Biol. 2012;22(5):540–549. doi: 10.1016/j.sbi.2012.06.007. PubMed DOI
Handbook of Glycosyltransferases and Related Genes; Taniguchi, N. ; Honke, K. ; Fukuda, M. ; Narimatsu, H. ; Yamaguchi, Y. ; Angata, T. , Eds.; Springer Japan: Tokyo, 2014. 10.1007/978-4-431-54240-7. DOI
Pastuch-Gawolek G., Chaubey B., Szewczyk B., Krol E.. Novel Thioglycosyl Analogs of Glycosyltransferase Substrates as Antiviral Compounds against Classical Swine Fever Virus and Hepatitis C Virus. Eur. J. Med. Chem. 2017;137:247–262. doi: 10.1016/j.ejmech.2017.05.051. PubMed DOI
Brzuska G., Pastuch-Gawolek G., Krawczyk M., Szewczyk B., Krol E.. Anti-Tick-Borne Encephalitis Virus Activity of Novel Uridine Glycoconjugates Containing Amide or/and 1,2,3-Triazole Moiety in the Linker Structure. Pharm. Basel Switz. 2020;13(12):E460. doi: 10.3390/ph13120460. PubMed DOI PMC
Krol E., Pastuch-Gawolek G., Chaubey B., Brzuska G., Erfurt K., Szewczyk B.. Novel Uridine Glycoconjugates, Derivatives of 4-Aminophenyl 1-Thioglycosides, as Potential Antiviral Compounds. Molecules. 2018;23(6):1435. doi: 10.3390/molecules23061435. PubMed DOI PMC
Ghosh A. K., Brindisi M.. Organic Carbamates in Drug Design and Medicinal Chemistry. J. Med. Chem. 2015;58(7):2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC
Kolb H. C., Finn M. G., Sharpless K. B.. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 2001;40(11):2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI
Behr J.-B., Gourlain T., Helimi A., Guillerm G.. Design, Synthesis and Biological Evaluation of Hetaryl-Nucleoside Derivatives as Inhibitors of Chitin Synthase. Bioorg. Med. Chem. Lett. 2003;13(10):1713–1716. doi: 10.1016/S0960-894X(03)00239-7. PubMed DOI
Krawczyk M., Pastuch-Gawolek G., Mrozek-Wilczkiewicz A., Kuczak M., Skonieczna M., Musiol R.. Synthesis of 8-Hydroxyquinoline Glycoconjugates and Preliminary Assay of Their B1,4-GalT Inhibitory and Anti-Cancer Properties. Bioorganic Chem. 2019;84:326–338. doi: 10.1016/j.bioorg.2018.11.047. PubMed DOI
Le Roux A., Meunier S., Le Gall T., Denis J.-M., Bischoff P., Wagner A.. Synthesis and Radioprotective Properties of Pulvinic Acid Derivatives. ChemMedChem. 2011;6(3):561–569. doi: 10.1002/cmdc.201000391. PubMed DOI
Mereyala H. B., Gurrala S. R.. A Highly Diastereoselective, Practical Synthesis of Allyl, Propargyl 2,3,4,6-Tetra-O-Acetyl-β-d-Gluco, β-d-Galactopyranosides and Allyl, Propargyl Heptaacetyl-β-d-Lactosides. Carbohydr. Res. 1998;307(3):351–354. doi: 10.1016/S0008-6215(97)10104-5. DOI
More S. V., Chang T. T., Chiao Y.-P., Jao S.-C., Lu C.-K., Li W.-S.. Glycosylation Enhances the Anti-Migratory Activities of Isomalyngamide A Analogs. Eur. J. Med. Chem. 2013;64:169–178. doi: 10.1016/j.ejmech.2013.03.044. PubMed DOI
Pietrzik N., Schips C., Ziegler T.. Efficient Synthesis of Glycosylated Asparaginic Acid Building Blocks via Click Chemistry. Synthesis. 2008;2008(4):519–526. doi: 10.1055/s-2008-1032150. DOI
Zhu X., Schmidt R. R.. Glycosylthiomethyl Chloride: A New Species for S-Neoglycoconjugate Synthesis. Synthesis of 1-N-Glycosylthiomethyl-1,2,3-Triazoles. J. Org. Chem. 2004;69(4):1081–1085. doi: 10.1021/jo035300o. PubMed DOI
Witczak Z. J., Sarnik J., Czubatka A., Forma E., Poplawski T.. Thio-Sugar Motif of Functional CARB-Pharmacophore for Antineoplastic Activity. Part 2. Bioorg. Med. Chem. Lett. 2014;24(24):5606–5611. doi: 10.1016/j.bmcl.2014.10.095. PubMed DOI
Pastuch-Gawołek G., Malarz K., Mrozek-Wilczkiewicz A., Musioł M., Serda M., Czaplinska B., Musiol R.. Small Molecule Glycoconjugates with Anticancer Activity. Eur. J. Med. Chem. 2016;112:130–144. doi: 10.1016/j.ejmech.2016.01.061. PubMed DOI
Syed A. M., Taha T. Y., Tabata T., Chen I. P., Ciling A., Khalid M. M., Sreekumar B., Chen P.-Y., Hayashi J. M., Soczek K. M., Ott M., Doudna J. A.. Rapid Assessment of SARS-CoV-2–Evolved Variants Using Virus-like Particles. Science. 2021;374(6575):1626–1632. doi: 10.1126/science.abl6184. PubMed DOI PMC
Krol E., Wandzik I., Pastuch-Gawolek G., Szewczyk B.. Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars. Molecules. 2018;23(7):1547. doi: 10.3390/molecules23071547. PubMed DOI PMC
Liu S., Chou C.-K., Wu W. W., Luan B., Wang T. T.. Stable Cell Clones Harboring Self-Replicating SARS-CoV-2 RNAs for Drug Screen. J. Virol. 2022;96(6):e0221621. doi: 10.1128/jvi.02216-21. PubMed DOI PMC
Holmes K. V., Doller E. W., Sturman L. S.. Tunicamycin Resistant Glycosylation of a Coronavirus Glycoprotein: Demonstration of a Novel Type of Viral Glycoprotein. Virology. 1981;115(2):334–344. doi: 10.1016/0042-6822(81)90115-X. PubMed DOI PMC
Casas-Sanchez A., Romero-Ramirez A., Hargreaves E., Ellis C. C., Grajeda B. I., Estevao I. L., Patterson E. I., Hughes G. L., Almeida I. C., Zech T., Acosta-Serrano Á.. Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection. mBio. 2022;13(1):e0371821. doi: 10.1128/mbio.03718-21. PubMed DOI PMC
Gadlage M. J., Sparks J. S., Beachboard D. C., Cox R. G., Doyle J. D., Stobart C. C., Denison M. R.. Murine Hepatitis Virus Nonstructural Protein 4 Regulates Virus-Induced Membrane Modifications and Replication Complex Function. J. Virol. 2010;84(1):280–290. doi: 10.1128/JVI.01772-09. PubMed DOI PMC
Sørensen D. M., Büll C., Madsen T. D., Lira-Navarrete E., Clausen T. M., Clark A. E., Garretson A. F., Karlsson R., Pijnenborg J. F. A., Yin X., Miller R. L., Chanda S. K., Boltje T. J., Schjoldager K. T., Vakhrushev S. Y., Halim A., Esko J. D., Carlin A. F., Hurtado-Guerrero R., Weigert R., Clausen H., Narimatsu Y.. Identification of Global Inhibitors of Cellular Glycosylation. Nat. Commun. 2023;14(1):948. doi: 10.1038/s41467-023-36598-7. PubMed DOI PMC
Ferjancic, Z. ; Bihelovic, F. ; Vulovic, B. ; Matovic, R. ; Trmcic, M. ; Jankovic, A. ; Pavlovic, M. ; Djurkovic, F. ; Prodanovic, R. ; Djurdjevic Djelmas, A. ; Kalicanin, N. ; Zlatovic, M. ; Sladic, D. ; Vallet, T. ; Vignuzzi, M. ; Saicic, R. N. . Development of Iminosugar-Based Glycosidase Inhibitors as Drug Candidates for SARS-CoV-2 Virus via Molecular Modelling and in Vitro Studies. J. Enzyme Inhib. Med. Chem. 2024. 39 (1), 2289007. 10.1080/14756366.2023.2289007. PubMed DOI PMC
Rajasekharan S., Milan Bonotto R., Nascimento Alves L., Kazungu Y., Poggianella M., Martinez-Orellana P., Skoko N., Polez S., Marcello A.. Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses. 2021;13(5):808. doi: 10.3390/v13050808. PubMed DOI PMC
Block T. M., Lu X., Mehta A. S., Blumberg B. S., Tennant B., Ebling M., Korba B., Lansky D. M., Jacob G. S., Dwek R. A.. Treatment of Chronic Hepadnavirus Infection in a Woodchuck Animal Model with an Inhibitor of Protein Folding and Trafficking. Nat. Med. 1998;4(5):610–614. doi: 10.1038/nm0598-610. PubMed DOI
Tierney M., Pottage J., Kessler H., Fischl M., Richman D., Merigan T., Powderly W., Smith S., Karim A., Sherman J.. The Tolerability and Pharmacokinetics of N-Butyl-Deoxynojirimycin in Patients with Advanced HIV Disease (ACTG 100) JAIDS J. Acquir. Immune Defic. Syndr. 1995;10(5):549. doi: 10.1097/00042560-199510050-00008. PubMed DOI
Durantel D.. Celgosivir, an Alpha-Glucosidase I Inhibitor for the Potential Treatment of HCV Infection. Curr. Opin. Investig. Drugs London Engl. 2000. 2009;10(8):860–870. PubMed
Crawford K. H. D., Eguia R., Dingens A. S., Loes A. N., Malone K. D., Wolf C. R., Chu H. Y., Tortorici M. A., Veesler D., Murphy M., Pettie D., King N. P., Balazs A. B., Bloom J. D.. Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses. 2020;12(5):513. doi: 10.3390/v12050513. PubMed DOI PMC
Stefanik M., Strakova P., Haviernik J., Miller A. D., Ruzek D., Eyer L.. Antiviral Activity of Vacuolar ATPase Blocker Diphyllin against SARS-CoV-2. Microorganisms. 2021;9(3):471. doi: 10.3390/microorganisms9030471. PubMed DOI PMC