Anticoronavirus Activity of Uridine Glycoconjugates Containing a 1,2,3-Triazole Moiety

. 2025 Aug 28 ; 68 (16) : 17859-17873. [epub] 20250808

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40778743

Coronaviruses can spread rapidly to new host species and cause severe respiratory and enteric diseases in vertebrates, including humans. To date, seven coronaviruses have been identified in humans, with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being the most notorious due to its substantial social and economic impact. Although anti-SARS-CoV-2 vaccines are available, infections remain widespread, highlighting the ongoing need for antiviral treatments. Here, we report the synthesis and evaluation of the activity of uridine glycoconjugates, designed as glycosyltransferase donor-type inhibitors incorporating a 1,2,3-triazole moiety. These compounds were tested against two model coronaviruses: murine hepatitis virus strain A59 (MHV) and human coronavirus strain NL63 (HCoV-NL63). Four of the synthesized compounds demonstrated strong antiviral activity against both viruses, and their efficacy was further confirmed against SARS-CoV-2. Our results suggest that these compounds interfere with the coronavirus infectivity and replication process. Thus, these novel compounds may prove to be effective broad-spectrum antiviral inhibitors.

Zobrazit více v PubMed

van der Hoek L.. Human Coronaviruses: What Do They Cause? Antivir. Ther. 2007;12(4 Pt B):651–658. doi: 10.1177/135965350701200S01.1. PubMed DOI

Woo P. C. Y., Lau S. K. P., Huang Y., Yuen K.-Y.. Coronavirus Diversity, Phylogeny and Interspecies Jumping. Exp. Biol. Med. Maywood NJ. 2009;234(10):1117–1127. doi: 10.3181/0903-MR-94. PubMed DOI

V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V.. Coronavirus Biology and Replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19(3):155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC

Körner R., Majjouti M., Alcazar M. A. A., Mahabir E.. Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-CoV-2. Viruses. 2020;12(8):880. doi: 10.3390/v12080880. PubMed DOI PMC

Agostini M. L., Andres E. L., Sims A. C., Graham R. L., Sheahan T. P., Lu X., Smith E. C., Case J. B., Feng J. Y., Jordan R., Ray A. S., Cihlar T., Siegel D., Mackman R. L., Clarke M. O., Baric R. S., Denison M. R.. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9(2):e00221–18. doi: 10.1128/mBio.00221-18. PubMed DOI PMC

van der Hoek L., Pyrc K., Berkhout B.. Human Coronavirus NL63, a New Respiratory Virus. FEMS Microbiol. Rev. 2006;30(5):760–773. doi: 10.1111/j.1574-6976.2006.00032.x. PubMed DOI PMC

Milewska A., Ciejka J., Kaminski K., Karewicz A., Bielska D., Zeglen S., Karolak W., Nowakowska M., Potempa J., Bosch B. J., Pyrc K., Szczubialka K.. Novel Polymeric Inhibitors of HCoV-NL63. Antiviral Res. 2013;97(2):112–121. doi: 10.1016/j.antiviral.2012.11.006. PubMed DOI PMC

Milewska A., Chi Y., Szczepanski A., Barreto-Duran E., Dabrowska A., Botwina P., Obloza M., Liu K., Liu D., Guo X., Ge Y., Li J., Cui L., Ochman M., Urlik M., Rodziewicz-Motowidlo S., Zhu F., Szczubialka K., Nowakowska M., Pyrc K.. HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV. J. Virol. 2021;95(4):e01622–20. doi: 10.1128/JVI.01622-20. PubMed DOI PMC

Barghash R. F., Gemmati D., Awad A. M., Elbakry M. M. M., Tisato V., Awad K., Singh A. V.. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Mol. Basel Switz. 2024;29(23):5564. doi: 10.3390/molecules29235564. PubMed DOI PMC

Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A., Horzinek M. C., Spaan W. J.. Primary Structure of the Glycoprotein E2 of Coronavirus MHV-A59 and Identification of the Trypsin Cleavage Site. Virology. 1987;161(2):479–487. doi: 10.1016/0042-6822(87)90142-5. PubMed DOI PMC

Walls A. C., Tortorici M. A., Frenz B., Snijder J., Li W., Rey F. A., DiMaio F., Bosch B.-J., Veesler D.. Glycan Shield and Epitope Masking of a Coronavirus Spike Protein Observed by Cryo-Electron Microscopy. Nat. Struct. Mol. Biol. 2016;23(10):899–905. doi: 10.1038/nsmb.3293. PubMed DOI PMC

Fung T. S., Liu D. X.. Post-Translational Modifications of Coronavirus Proteins: Roles and Function. Future Virol. 2018;13(6):405–430. doi: 10.2217/fvl-2018-0008. PubMed DOI PMC

Walls A. C., Park Y.-J., Tortorici M. A., Wall A., McGuire A. T., Veesler D.. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;183(6):1735. doi: 10.1016/j.cell.2020.11.032. PubMed DOI PMC

Watanabe Y., Allen J. D., Wrapp D., McLellan J. S., Crispin M.. Site-Specific Glycan Analysis of the SARS-CoV-2 Spike. Science. 2020;369(6501):330–333. doi: 10.1126/science.abb9983. PubMed DOI PMC

Ramírez Hernández E., Hernández-Zimbrón L. F., Martínez Zúñiga N., Leal-García J. J., Ignacio Hernández V., Ucharima-Corona L. E., Pérez Campos E., Zenteno E.. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Viral Immunol. 2021;34(3):165–173. doi: 10.1089/vim.2020.0174. PubMed DOI

Breton C., Fournel-Gigleux S., Palcic M. M.. Recent Structures, Evolution and Mechanisms of Glycosyltransferases. Curr. Opin. Struct. Biol. 2012;22(5):540–549. doi: 10.1016/j.sbi.2012.06.007. PubMed DOI

Handbook of Glycosyltransferases and Related Genes; Taniguchi, N. ; Honke, K. ; Fukuda, M. ; Narimatsu, H. ; Yamaguchi, Y. ; Angata, T. , Eds.; Springer Japan: Tokyo, 2014. 10.1007/978-4-431-54240-7. DOI

Pastuch-Gawolek G., Chaubey B., Szewczyk B., Krol E.. Novel Thioglycosyl Analogs of Glycosyltransferase Substrates as Antiviral Compounds against Classical Swine Fever Virus and Hepatitis C Virus. Eur. J. Med. Chem. 2017;137:247–262. doi: 10.1016/j.ejmech.2017.05.051. PubMed DOI

Brzuska G., Pastuch-Gawolek G., Krawczyk M., Szewczyk B., Krol E.. Anti-Tick-Borne Encephalitis Virus Activity of Novel Uridine Glycoconjugates Containing Amide or/and 1,2,3-Triazole Moiety in the Linker Structure. Pharm. Basel Switz. 2020;13(12):E460. doi: 10.3390/ph13120460. PubMed DOI PMC

Krol E., Pastuch-Gawolek G., Chaubey B., Brzuska G., Erfurt K., Szewczyk B.. Novel Uridine Glycoconjugates, Derivatives of 4-Aminophenyl 1-Thioglycosides, as Potential Antiviral Compounds. Molecules. 2018;23(6):1435. doi: 10.3390/molecules23061435. PubMed DOI PMC

Ghosh A. K., Brindisi M.. Organic Carbamates in Drug Design and Medicinal Chemistry. J. Med. Chem. 2015;58(7):2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC

Kolb H. C., Finn M. G., Sharpless K. B.. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 2001;40(11):2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI

Behr J.-B., Gourlain T., Helimi A., Guillerm G.. Design, Synthesis and Biological Evaluation of Hetaryl-Nucleoside Derivatives as Inhibitors of Chitin Synthase. Bioorg. Med. Chem. Lett. 2003;13(10):1713–1716. doi: 10.1016/S0960-894X(03)00239-7. PubMed DOI

Krawczyk M., Pastuch-Gawolek G., Mrozek-Wilczkiewicz A., Kuczak M., Skonieczna M., Musiol R.. Synthesis of 8-Hydroxyquinoline Glycoconjugates and Preliminary Assay of Their B1,4-GalT Inhibitory and Anti-Cancer Properties. Bioorganic Chem. 2019;84:326–338. doi: 10.1016/j.bioorg.2018.11.047. PubMed DOI

Le Roux A., Meunier S., Le Gall T., Denis J.-M., Bischoff P., Wagner A.. Synthesis and Radioprotective Properties of Pulvinic Acid Derivatives. ChemMedChem. 2011;6(3):561–569. doi: 10.1002/cmdc.201000391. PubMed DOI

Mereyala H. B., Gurrala S. R.. A Highly Diastereoselective, Practical Synthesis of Allyl, Propargyl 2,3,4,6-Tetra-O-Acetyl-β-d-Gluco, β-d-Galactopyranosides and Allyl, Propargyl Heptaacetyl-β-d-Lactosides. Carbohydr. Res. 1998;307(3):351–354. doi: 10.1016/S0008-6215(97)10104-5. DOI

More S. V., Chang T. T., Chiao Y.-P., Jao S.-C., Lu C.-K., Li W.-S.. Glycosylation Enhances the Anti-Migratory Activities of Isomalyngamide A Analogs. Eur. J. Med. Chem. 2013;64:169–178. doi: 10.1016/j.ejmech.2013.03.044. PubMed DOI

Pietrzik N., Schips C., Ziegler T.. Efficient Synthesis of Glycosylated Asparaginic Acid Building Blocks via Click Chemistry. Synthesis. 2008;2008(4):519–526. doi: 10.1055/s-2008-1032150. DOI

Zhu X., Schmidt R. R.. Glycosylthiomethyl Chloride: A New Species for S-Neoglycoconjugate Synthesis. Synthesis of 1-N-Glycosylthiomethyl-1,2,3-Triazoles. J. Org. Chem. 2004;69(4):1081–1085. doi: 10.1021/jo035300o. PubMed DOI

Witczak Z. J., Sarnik J., Czubatka A., Forma E., Poplawski T.. Thio-Sugar Motif of Functional CARB-Pharmacophore for Antineoplastic Activity. Part 2. Bioorg. Med. Chem. Lett. 2014;24(24):5606–5611. doi: 10.1016/j.bmcl.2014.10.095. PubMed DOI

Pastuch-Gawołek G., Malarz K., Mrozek-Wilczkiewicz A., Musioł M., Serda M., Czaplinska B., Musiol R.. Small Molecule Glycoconjugates with Anticancer Activity. Eur. J. Med. Chem. 2016;112:130–144. doi: 10.1016/j.ejmech.2016.01.061. PubMed DOI

Syed A. M., Taha T. Y., Tabata T., Chen I. P., Ciling A., Khalid M. M., Sreekumar B., Chen P.-Y., Hayashi J. M., Soczek K. M., Ott M., Doudna J. A.. Rapid Assessment of SARS-CoV-2–Evolved Variants Using Virus-like Particles. Science. 2021;374(6575):1626–1632. doi: 10.1126/science.abl6184. PubMed DOI PMC

Krol E., Wandzik I., Pastuch-Gawolek G., Szewczyk B.. Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars. Molecules. 2018;23(7):1547. doi: 10.3390/molecules23071547. PubMed DOI PMC

Liu S., Chou C.-K., Wu W. W., Luan B., Wang T. T.. Stable Cell Clones Harboring Self-Replicating SARS-CoV-2 RNAs for Drug Screen. J. Virol. 2022;96(6):e0221621. doi: 10.1128/jvi.02216-21. PubMed DOI PMC

Holmes K. V., Doller E. W., Sturman L. S.. Tunicamycin Resistant Glycosylation of a Coronavirus Glycoprotein: Demonstration of a Novel Type of Viral Glycoprotein. Virology. 1981;115(2):334–344. doi: 10.1016/0042-6822(81)90115-X. PubMed DOI PMC

Casas-Sanchez A., Romero-Ramirez A., Hargreaves E., Ellis C. C., Grajeda B. I., Estevao I. L., Patterson E. I., Hughes G. L., Almeida I. C., Zech T., Acosta-Serrano Á.. Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection. mBio. 2022;13(1):e0371821. doi: 10.1128/mbio.03718-21. PubMed DOI PMC

Gadlage M. J., Sparks J. S., Beachboard D. C., Cox R. G., Doyle J. D., Stobart C. C., Denison M. R.. Murine Hepatitis Virus Nonstructural Protein 4 Regulates Virus-Induced Membrane Modifications and Replication Complex Function. J. Virol. 2010;84(1):280–290. doi: 10.1128/JVI.01772-09. PubMed DOI PMC

Sørensen D. M., Büll C., Madsen T. D., Lira-Navarrete E., Clausen T. M., Clark A. E., Garretson A. F., Karlsson R., Pijnenborg J. F. A., Yin X., Miller R. L., Chanda S. K., Boltje T. J., Schjoldager K. T., Vakhrushev S. Y., Halim A., Esko J. D., Carlin A. F., Hurtado-Guerrero R., Weigert R., Clausen H., Narimatsu Y.. Identification of Global Inhibitors of Cellular Glycosylation. Nat. Commun. 2023;14(1):948. doi: 10.1038/s41467-023-36598-7. PubMed DOI PMC

Ferjancic, Z. ; Bihelovic, F. ; Vulovic, B. ; Matovic, R. ; Trmcic, M. ; Jankovic, A. ; Pavlovic, M. ; Djurkovic, F. ; Prodanovic, R. ; Djurdjevic Djelmas, A. ; Kalicanin, N. ; Zlatovic, M. ; Sladic, D. ; Vallet, T. ; Vignuzzi, M. ; Saicic, R. N. . Development of Iminosugar-Based Glycosidase Inhibitors as Drug Candidates for SARS-CoV-2 Virus via Molecular Modelling and in Vitro Studies. J. Enzyme Inhib. Med. Chem. 2024. 39 (1), 2289007. 10.1080/14756366.2023.2289007. PubMed DOI PMC

Rajasekharan S., Milan Bonotto R., Nascimento Alves L., Kazungu Y., Poggianella M., Martinez-Orellana P., Skoko N., Polez S., Marcello A.. Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses. 2021;13(5):808. doi: 10.3390/v13050808. PubMed DOI PMC

Block T. M., Lu X., Mehta A. S., Blumberg B. S., Tennant B., Ebling M., Korba B., Lansky D. M., Jacob G. S., Dwek R. A.. Treatment of Chronic Hepadnavirus Infection in a Woodchuck Animal Model with an Inhibitor of Protein Folding and Trafficking. Nat. Med. 1998;4(5):610–614. doi: 10.1038/nm0598-610. PubMed DOI

Tierney M., Pottage J., Kessler H., Fischl M., Richman D., Merigan T., Powderly W., Smith S., Karim A., Sherman J.. The Tolerability and Pharmacokinetics of N-Butyl-Deoxynojirimycin in Patients with Advanced HIV Disease (ACTG 100) JAIDS J. Acquir. Immune Defic. Syndr. 1995;10(5):549. doi: 10.1097/00042560-199510050-00008. PubMed DOI

Durantel D.. Celgosivir, an Alpha-Glucosidase I Inhibitor for the Potential Treatment of HCV Infection. Curr. Opin. Investig. Drugs London Engl. 2000. 2009;10(8):860–870. PubMed

Crawford K. H. D., Eguia R., Dingens A. S., Loes A. N., Malone K. D., Wolf C. R., Chu H. Y., Tortorici M. A., Veesler D., Murphy M., Pettie D., King N. P., Balazs A. B., Bloom J. D.. Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses. 2020;12(5):513. doi: 10.3390/v12050513. PubMed DOI PMC

Stefanik M., Strakova P., Haviernik J., Miller A. D., Ruzek D., Eyer L.. Antiviral Activity of Vacuolar ATPase Blocker Diphyllin against SARS-CoV-2. Microorganisms. 2021;9(3):471. doi: 10.3390/microorganisms9030471. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...