Hydrophobic residues in the α-synuclein NAC domain drive seed-competent fibril formation and are targeted by peptide inhibitors

. 2025 Aug 17 ; () : . [epub] 20250817

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40819250

Grantová podpora
LM2023053 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023052 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5107 Ministerstvo Školství, Mládeže a Tělovýchovy
23-06301J Grantová Agentura České Republiky
872195 European Commission
TN02000109 Technology Agency of the Czech Republic

Alpha-synuclein (αSyn) is a 14-kDa intrinsically disordered protein that aggregates into insoluble fibrils in synucleinopathies, including Lewy bodies, multiple system atrophy, and Parkinson's disease, contributing to neurotoxicity and disease progression. The ability of these fibrils to seed further aggregation of native protein is central to αSyn pathology. Here, we examined the broader non-amyloid component (NAC) domain, focusing on how residues flanking the hydrophobic 68-71 (GAVV) motif of αSyn (residues 8-11 in NAC35) modulate nucleation, stability, and pathological seeding. Using full-length NAC peptide and truncated variants, we show that the 68-71 (GAVV) stretch is critical for nucleation and aggregation into prion-like fibrils. Peptide inhibitors targeting this hydrophobic region block the formation of seed-competent fibrils. Molecular dynamics simulations showed that these inhibitors alter peptide-peptide interactions and contact key hydrophobic residues within the NAC domain. Further analysis indicates that residues beyond the 68-71 (GAVV) motif, such as 79-95, are critical for stabilizing fibrils and promoting seeding competency. Peptide B interactions with key hydrophobic motifs within the NAC domain were visualized in silico, offering mechanistic insights into how it disrupts aggregation.

Zobrazit více v PubMed

de Oliveira GAP & Silva JL (2019) Alpha‐synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson's disease. Commun Biol 2, 374.

Kumar ST, Mahul‐Mellier A‐L, Hegde RN, Rivière G, Moons R, Ibáñez de Opakua A, Magalhães P, Rostami I, Donzelli S, Sobott F et al. (2022) A NAC domain mutation (E83Q) unlocks the pathogenicity of human alpha‐synuclein and recapitulates its pathological diversity. Sci Adv 8, eabn0044.

Privat C, Madurga S, Mas F & Rubio‐Martinez J (2022) Molecular dynamics simulations of an α‐synuclein NAC domain fragment with a ff14IDPSFF IDP‐specific force field suggest β‐sheet intermediate states of fibrillation. Phys Chem Chem Phys 24, 18841–18853.

Delenclos M, Burgess JD, Lamprokostopoulou A, Outeiro TF, Vekrellis K & McLean PJ (2019) Cellular models of alpha‐synuclein toxicity and aggregation. J Neurochem 150, 566–576.

Boza‐Serrano A, Reyes JF, Rey NL, Leffler H, Bousset L, Nilsson U, Brundin P, Venero JL, Burguillos MA & Deierborg T (2014) The role of galectin‐3 in α‐synuclein‐induced microglial activation. Acta Neuropathol Commun 2, 156.

Vargas JY, Grudina C & Zurzolo C (2019) The prion‐like spreading of α‐synuclein: from in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 50, 89–101.

Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R & Baekelandt V (2015) α‐Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344.

Zhang P & Liu B (2019) Association between Parkinson's disease and risk of cancer: a PRISMA‐compliant meta‐analysis. ACS Chem Neurosci 10, 4430–4439.

Yang H‐M, Cheng Y‐Z, Hou T‐Z, Fan J‐K, Gu L, Zhang J‐N & Zhang H (2023) Upregulation of Parkinson's disease‐associated protein alpha‐synuclein suppresses tumorigenesis via interaction with mGluR5 and gamma‐synuclein in liver cancer. Arch Biochem Biophys 744, 109698.

Filippou PS & Outeiro TF (2021) Cancer and Parkinson's disease: common targets, emerging hopes. Mov Disord 36, 340–346.

Flagmeier P, Meisl G, Vendruscolo M, Knowles TPJ, Dobson CM, Buell AK & Galvagnion C (2016) Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α‐synuclein aggregation. Proc Natl Acad Sci USA 113, 10328–10333.

Ulamec SM, Maya‐Martinez R, Byrd EJ, Dewison KM, Xu Y, Willis LF, Sobott F, Heath GR, van Oosten Hawle P, Buchman VL et al. (2022) Single residue modulators of amyloid formation in the N‐terminal P1‐region of α‐synuclein. Nat Commun 13, 4986.

Paslawski W, Mysling S, Thomsen K, Jørgensen TJD & Otzen DE (2014) Co‐existence of two different α‐synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. Angew Chem Int Ed 53, 7560–7563.

Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S et al. (2018) Cryo‐EM of full‐length α‐synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9, 3609.

Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, Courtney JM, Kim JK, Barclay AM, Kendall A et al. (2016) Solid‐state NMR structure of a pathogenic fibril of full‐length human α‐synuclein. Nat Struct Mol Biol 23, 409–415.

Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M et al. (2015) Structure of the toxic core of α‐synuclein from invisible crystals. Nature 525, 486–490.

Waxman EA, Emmer KL & Giasson BI (2010) Residue Glu83 plays a major role in negatively regulating α‐synuclein amyloid formation. Biochem Biophys Res Commun 391, 1415–1420.

Bodles AM, Guthrie DJS, Greer B & Irvine GB (2001) Identification of the region of non‐aβ component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity. J Neurochem 78, 384–395.

Giasson BI, Murray IVJ, Trojanowski JQ & Lee VM‐Y (2001) A hydrophobic stretch of 12 amino acid residues in the middle of α‐synuclein is essential for filament assembly. J Biol Chem 276, 2380–2386.

Rezaeian N, Shirvanizadeh N, Mohammadi S, Nikkhah M & Arab SS (2017) The inhibitory effects of biomimetically designed peptides on α‐synuclein aggregation. Arch Biochem Biophys 634, 96–106.

Kyte J & Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.

Hoyer W, Antony T, Cherny D, Heim G, Jovin TM & Subramaniam V (2002) Dependence of α‐synuclein aggregate morphology on solution conditions. J Mol Biol 322, 383–393.

Flynn JD, McGlinchey RP, Walker RL & Lee JC (2018) Structural features of α‐synuclein amyloid fibrils revealed by Raman spectroscopy. J Biol Chem 293, 767–776.

Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM & Diamond MI (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA 111, E4376–E4385. doi: 10.1073/pnas.1411649111

Peña‐Díaz S, Pujols J, Vasili E, Pinheiro F, Santos J, Manglano‐Artuñedo Z, Outeiro TF & Ventura S (2022) The small aromatic compound SynuClean‐D inhibits the aggregation and seeded polymerization of multiple α‐synuclein strains. J Biol Chem 298, 101902.

Murray KA, Hu CJ, Pan H, Lu J, Abskharon R, Bowler JT, Rosenberg GM, Williams CK, Elezi G, Balbirnie M et al. (2023) Small molecules disaggregate alpha‐synuclein and prevent seeding from patient brain‐derived fibrils. Proc Natl Acad Sci USA 120, e2217835120.

Huang R, Tang R, Song X, Wang J, Chen K & Tian W (2023) Insights into aggregation dynamics of NACore peptides from coarse‐grained simulations. Proteins 91, 16–21.

Martins GF, Nascimento C & Galamba N (2023) Mechanistic insights into polyphenols' aggregation inhibition of α‐synuclein and related peptides. ACS Chem Neurosci 14, 1905–1920.

Yamauchi M & Okumura H (2021) Dimerization of α‐synuclein fragments studied by isothermal–isobaric replica‐permutation molecular dynamics simulation. J Chem Inf Model 61, 1307–1321.

Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM et al. (2023) Residue‐specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (aβ) peptides. Sci Rep 13, 3341.

Lam HT, Graber MC, Gentry KA & Bieschke J (2016) Stabilization of α‐synuclein fibril clusters prevents fragmentation and reduces seeding activity and toxicity. Biochemistry 55, 675–685.

Vettore N & Buell AK (2019) Thermodynamics of amyloid fibril formation from chemical depolymerization. Phys Chem Chem Phys 21, 26184–26194.

Taylor AIP & Staniforth RA (2022) General principles underpinning amyloid structure. Front Neurosci 16, 878869.

Tarutani A, Suzuki G, Shimozawa A, Nonaka T, Akiyama H, Hisanaga S & Hasegawa M (2016) The effect of fragmented pathogenic α‐Synuclein seeds on prion‐like propagation. J Biol Chem 291, 18675–18688.

Griner SL, Seidler P, Bowler J, Murray KA, Yang TP, Sahay S, Sawaya MR, Cascio D, Rodriguez JA, Philipp S et al. (2019) Structure‐based inhibitors of amyloid beta core suggest a common interface with tau. elife 8, e46924.

Annadurai N, Malina L, Malohlava J, Hajdúch M & Das V (2022) Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Biochimie 200, 79–86.

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE & Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26, 1701–1718.

Oostenbrink C, Soares TA, van der Vegt NFA & van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34, 273–284.

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J et al. (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500.

Smith PE & van Gunsteren WF (1994) Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J Chem Phys 100, 3169–3174.

Bussi G, Donadio D & Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126, 014101.

Parrinello M & Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52, 7182–7190.

Humphrey W, Dalke A & Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14, 33–38.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...