Mechanistic Insights Into Overloading-Induced Terminal Differentiation of TMJ Condylar Cartilage at the Single Cell Level
Status In-Process Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40837199
PubMed Central
PMC12362756
DOI
10.1002/smmd.70011
PII: SMMD70011
Knihovny.cz E-zdroje
- Klíčová slova
- Acvr1b, condylar cartilage, single cell, temporomandibular joint, terminal differentiation,
- Publikační typ
- časopisecké články MeSH
The incidence of temporomandibular joint (TMJ) degeneration has been steadily increasing, with overloading identified as a major risk factor. This condition often leads to condylar cartilage degeneration, significantly affecting patients' quality of life; however, the molecular mechanisms underlying this process remain poorly understood, and effective treatments are still lacking. We utilized single-nucleus RNA sequencing to analyze the condylar cartilage in an overloading mouse model. This approach enabled the identification of 11 distinct cell types within the condylar chondrocytes. Through the application of pseudotime trajectory Analysis and cellchat analyses, we identified the key gene Acvr1b and its associated signaling pathway, which are crucial for regulating the terminal differentiation of condylar chondrocytes. This study utilized single-nucleus RNA sequencing and in vitro validation to investigate the role of Acvr1b in TMJ cartilage degeneration under overloading stress. Our findings reveal key pathways involved in chondrocyte differentiation, providing a theoretical basis for the development of targeted therapeutic interventions.
Department of Biology University of Hartford West Hartford Connecticut USA
Hradec Králové University Hospital Hradec Králové Czech Republic
Zobrazit více v PubMed
Qvintus V., Sipilä K., Le Bell Y., and A. L. Suominen , “Prevalence of Clinical Signs and Pain Symptoms of Temporomandibular Disorders and Associated Factors in Adult Finns,” Acta Odontologica Scandinavica 78 (2020): 515–521. PubMed
Yadav S., Yang Y., Dutra E. H., Robinson J. L., and Wadhwa S., “Temporomandibular Joint Disorders in Older Adults,” Journal of the American Geriatrics Society 66 (2018): 1213–1217. PubMed PMC
Yang H., Wen Y., Zhang M., et al., “MTORC1 Coordinates the Autophagy and Apoptosis Signaling in Articular Chondrocytes in Osteoarthritic Temporomandibular Joint,” Autophagy 16 (2020): 271–288. PubMed PMC
Fujita M., Sato‐Shigeta M., Mori H., et al., “Protective Effects of Low‐Intensity Pulsed Ultrasound on Mandibular Condylar Cartilage Exposed to Mechanical Overloading,” Ultrasound in Medicine & Biology 45 (2019): 944–953. PubMed
Sobue T., Yeh W. C., Chhibber A., et al., “Murine TMJ Loading Causes Increased Proliferation and Chondrocyte Maturation,” Journal of Dental Research 90 (2011): 512–516. PubMed PMC
Tanaka E., Aoyama J., Miyauchi M., et al., “Vascular Endothelial Growth Factor Plays an Important Autocrine/Paracrine Role in the Progression of Osteoarthritis,” Histochemistry and Cell Biology 123 (2005): 275–281. PubMed
Fang L., Ye Y., Tan X., Huang L., and He Y., “Overloading Stress‐Induced Progressive Degeneration and Self‐Repair in Condylar Cartilage,” Annals of the New York Academy of Sciences 1503 (2021): 72–87. PubMed
Roberts W. E. and Stocum D. L., “Part II: Temporomandibular Joint (TMJ)‐Regeneration, Degeneration, and Adaptation,” Current Osteoporosis Reports 16 (2018): 369–379. PubMed
Li B., Guan G., Mei L., Jiao K., and Li H., “Pathological Mechanism of Chondrocytes and the Surrounding Environment During Osteoarthritis of Temporomandibular Joint,” Journal of Cellular and Molecular Medicine 25 (2021): 4902–4911. PubMed PMC
Wieckiewicz M., Boening K., Wiland P., Shiau Y. Y., and Paradowska‐Stolarz A., “Reported Concepts for the Treatment Modalities and Pain Management of Temporomandibular Disorders,” Journal of Headache and Pain 16 (2015): 106. PubMed PMC
Juan Z., Xing‐Tong M., Xu Z., and Chang‐yi L., “Potential Pathological and Molecular Mechanisms of Temporomandibular Joint Osteoarthritis,” Journal of Dental Sciences 18 (2023): 959–971. PubMed PMC
Huang Z., Zhou M., Wang Q., Zhu M., Chen S., and Li H., “Mechanical and Hypoxia Stress Can Cause Chondrocytes Apoptosis through Over‐Activation of Endoplasmic Reticulum Stress,” Archives of Oral Biology 84 (2017): 125–132. PubMed
Zhang J., Pi C., Cui C., et al., “PTHrP Promotes Subchondral Bone Formation in TMJ‐OA,” International Journal of Oral Science 14 (2022): 37. PubMed PMC
Akimoto Y., Fujii W., Naito K., and Sugiura K., “The Effect of ACVR1B/TGFBR1/ACVR1C Signaling Inhibition on Oocyte and Granulosa Cell Development During In Vitro Growth Culture,” Journal of Reproduction and Development 69 (2023): 270–278. PubMed PMC
Mizuno Y., Tokuzawa Y., Ninomiya Y., et al., “miR‐210 Promotes Osteoblastic Differentiation Through Inhibition of AcvR1b,” FEBS Letters 583 (2009): 2263–2268. PubMed
Xu M., Palmer A. K., Ding H., et al., “Targeting Senescent Cells Enhances Adipogenesis and Metabolic Function in Old Age,” eLife 4 (2015): e12997. PubMed PMC
Yadin D., Knaus P., and Mueller T. D., “Structural Insights into BMP Receptors: Specificity, Activation and Inhibition,” Cytokine & Growth Factor Reviews 27 (2016): 13–34. PubMed
Olsen O. E., Sankar M., Elsaadi S., et al., “BMPR2 Inhibits Activin and BMP Signaling via Wild‐type ALK2,” Journal of Cell Science 131 (2018): jcs213512. PubMed
van der Kraan P. M., “Age‐Related Alterations in TGF Beta Signaling as a Causal Factor of Cartilage Degeneration in Osteoarthritis,” Bio‐Medical Materials and Engineering 24 (2014): 75–80. PubMed
Hino K., Ikeya M., Horigome K., et al., “Neofunction of ACVR1 in Fibrodysplasia Ossificans Progressiva,” Proceedings of the National Academy of Sciences 112 (2015): 15438–15443. PubMed PMC
Shahid M., Spagnolli E., Ernande L., et al., “BMP Type I Receptor ALK2 Is Required for Angiotensin II‐Induced Cardiac Hypertrophy,” American Journal of Physiology ‐ Heart and Circulatory Physiology 310 (2016): H984–H994. PubMed PMC
Frenkel S. R., Saadeh P. B., Mehrara B. J., et al., “Transforming Growth Factor Beta Superfamily Members: Role in Cartilage Modeling,” Plastic and Reconstructive Surgery 105 (2000): 980–990. PubMed
van den Bosch M. H., Blom A. B., van Lent P. L., et al., “Canonical Wnt Signaling Skews TGF‐β Signaling in Chondrocytes Towards Signaling via ALK1 and Smad 1/5/8,” Cellular Signalling 26 (2014): 951–958. PubMed
Hillege M. M. G., Shi A., Galli R. A., et al., “Lack of Tgfbr1 and Acvr1b Synergistically Stimulates Myofibre Hypertrophy and Accelerates Muscle Regeneration,” eLife 11 (2022): e77610. PubMed PMC
Yu G., Wang L. G., Han Y., and He Q. Y., “clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters,” OMICS 16 (2012): 284–287. PubMed PMC
Jin S., Guerrero‐Juarez C. F., Zhang L., et al., “Inference and Analysis of Cell‐Cell Communication Using CellChat,” Nature Communications 12 (2021): 1088. PubMed PMC
Gulati G. S., Sikandar S. S., Wesche D. J., et al., “Single‐Cell Transcriptional Diversity Is a Hallmark of Developmental Potential,” Science 367 (2020): 405–411. PubMed PMC
Qiu X., Hill A., Packer J., Lin D., Ma Y. A., and Trapnell C., “Single‐Cell mRNA Quantification and Differential Analysis With Census,” Nature Methods 14 (2017): 309–315. PubMed PMC