Ultrafast 4D Scanning Transmission Electron Microscopy for Imaging of Localized Optical Fields
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40861266
PubMed Central
PMC12372171
DOI
10.1021/acsphotonics.5c00864
Knihovny.cz E-zdroje
- Klíčová slova
- electron microscopy, electron-light interaction, near-fields, plasmonics, ultrafast,
- Publikační typ
- časopisecké články MeSH
Ultrafast electron microscopy aims for imaging transient phenomena occurring on nanoscale. One of its goals is to visualize localized optical and plasmonic modes generated by coherent excitation in the vicinity of various types of nanostructures. Such imaging capability was enabled by photon-induced near-field optical microscopy, which is based on spectral filtering of electrons inelastically scattered due to the stimulated interaction with the near-field. Here, we report on the development of ultrafast four-dimensional (4D) scanning transmission electron microscopy, which allows us to image the transverse components of the optical near-field while avoiding the need of electron spectral filtering. We demonstrate that this method is capable of imaging the integrated Lorentz force generated by optical near-fields of a tungsten nanotip and the ponderomotive potential of an optical standing wave with a spatial resolution of 21 nm.
Zobrazit více v PubMed
Krivanek O. L., Lovejoy T., Dellby N.. et al. Vibrational spectroscopy in the electron microscope. Nature. 2014;514(7521):209–212. doi: 10.1038/nature13870. PubMed DOI
Hage F. S., Radtke G., Kepaptsoglou D. M., Lazzeri M., Ramasse Q. M.. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI
Sirohi D., Chen Z., Sun L.. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science. 2016;352:467–470. doi: 10.1126/science.aaf5316. PubMed DOI PMC
Cheng Y.. cryo-EMHow did it get here and where will it go. Science. 2018;361(6284):876–880. doi: 10.1126/science.aaf5316. PubMed DOI PMC
Ophus C.. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019;25(3):563–582. doi: 10.1017/s1431927619000497. PubMed DOI
Yurtsever A., Zewail A. H.. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy. Science. 2009;326(5953):708–712. doi: 10.1126/science.1179314. PubMed DOI
Feist A., da Silva N. R., Liang W., Ropers C., Schäfer S.. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy. Struct. Dyn. 2018;5(1):014302. doi: 10.1063/1.5009822. PubMed DOI PMC
Nakamura A., Shimojima T., Ishizaka K.. Visualizing optically-induced strains by five-dimensional ultrafast electron microscopy. Faraday Discuss. 2022;237:27–39. doi: 10.1039/D2FD00062H. PubMed DOI
Zewail, A. H. ; Thomas, J. M. . 4D Electron Microscopy. Imaging in Space and Time; Imperial College Press, 2009.
Ash E. A., Nicholls G.. Super-resolution aperture scanning microscope. Nature. 1972;237:510–512. doi: 10.1038/237510a0. PubMed DOI
Hommelhoff P., Kealhofer C., Kasevich M. A.. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 2006;97:247402. doi: 10.1103/PhysRevLett.97.247402. PubMed DOI
Ropers C., Solli D. R., Schulz C. P., Lienau C., Elsaesser T.. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 2007;98:043907. doi: 10.1103/PhysRevLett.98.043907. PubMed DOI
Krasnok A., Tymchenko M., Alu A.. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today. 2018;21:8–21. doi: 10.1016/j.mattod.2017.06.007. DOI
Barwick B., Flannigan D., Zewail A. H.. Photon-induced near-field electron microscopy. Nature. 2009;462(7275):902–906. doi: 10.1038/nature08662. PubMed DOI
Park S. T., Lin M., Zewail A. H.. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 2010;12(12):123028. doi: 10.1088/1367-2630/12/12/123028. DOI
de Abajo F. J. G., Asenjo-Garcia A., Kociak M.. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 2010;10(5):1859–1863. doi: 10.1021/nl100613s. PubMed DOI
de Abajo F. J. G.. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82(1):209–275. doi: 10.1103/RevModPhys.82.209. DOI
Flannigan D. J., Barwick B., Zewail A. H.. Biological imaging with 4D ultrafast electron microscopy. Proc. Natl. Acad. Sci. U.S.A. 2010;107(22):9933–9937. doi: 10.1073/pnas.1005653107. PubMed DOI PMC
Vanacore G., Fitzpatrick A., Zewail A. H.. Four-dimensional electron microscopy: Ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today. 2016;11(2):228–249. doi: 10.1016/j.nantod.2016.04.009. DOI
Lu Y., Yoo B. K., Ng A. H. C.. et al. 4D electron microscopy of T cell activation. Proc. Natl. Acad. Sci. U.S.A. 2019;116(44):22014–22019. doi: 10.1073/pnas.1914078116. PubMed DOI PMC
Piazza L., Lummen T., Quiñonez E.. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 2015;6(1):6407. doi: 10.1038/ncomms7407. PubMed DOI PMC
Liu H., Baskin J., Zewail A. H.. Infrared PINEM developed by diffraction in 4D UEM. Proc. Natl. Acad. Sci. U. S. A. 2016;113(8):2041–2046. doi: 10.1073/pnas.1600317113. PubMed DOI PMC
Vanacore G. M., Berruto G., Madan I.. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 2019;18(6):573–579. doi: 10.1038/s41563-019-0336-1. PubMed DOI
Liu H., Gage T. E., Singh P.. et al. Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 2021;21(13):5842–5849. doi: 10.1021/acs.nanolett.1c01824. PubMed DOI
Feist A., Echternkamp K. E., Schauss J.. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature. 2015;521(7551):200–203. doi: 10.1038/nature14463. PubMed DOI
Krehl J., Guzzinati G., Schultz J., Potapov P., Pohl D., Martin J., Verbeeck J., Fery A., Büchner B., Lubk A.. Spectral field mapping in plasmonic nanostructures with nanometer resolution. Nat. Commun. 2018;9(1):4207. doi: 10.1038/s41467-018-06572-9. PubMed DOI PMC
Li H., Su Z.. Energy-filtered dark-field imaging of nanoparticles by PINEM in 4D electron microscopy. Appl. Phys. Lett. 2022;120(19):191103. doi: 10.1063/5.0090284. DOI
Shiloh R., Chlouba T., Hommelhoff P.. Quantum-coherent light-electron interaction in a scanning electron microscope. Phys. Rev. Lett. 2022;128(23):235301. doi: 10.1103/PhysRevLett.128.235301. PubMed DOI
Breuer J., Hommelhoff P.. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 2013;111(13):134803. doi: 10.1103/PhysRevLett.111.134803. PubMed DOI
Harvey T. R., Henke J. W., Kfir O.. et al. Probing chirality with inelastic electron-light scattering. Nano Lett. 2020;20(6):4377–4383. doi: 10.1021/acs.nanolett.0c01130. PubMed DOI
Shiloh R., Illmer J., Chlouba T.. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature. 2021;597(7877):498–502. doi: 10.1038/s41586-021-03812-9. PubMed DOI
Chlouba T., Shiloh R., Kraus S.. et al. Coherent nanophotonic electron accelerator. Nature. 2023;622(7983):476–480. doi: 10.1038/s41586-023-06602-7. PubMed DOI
Kozák M., Beck P., Deng H.. et al. Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface. Opt. Express. 2017;25:19195–19204. doi: 10.1364/OE.25.019195. PubMed DOI
Dahan R., Nehemia S., Shentcis M.. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 2020;16(11):1123–1131. doi: 10.1038/s41567-020-01042-w. DOI
Wang K., Dahan R., Shentcis M.. et al. Coherent interaction between free electrons and a photonic cavity. Nature. 2020;582(7810):50–54. doi: 10.1038/s41586-020-2321-x. PubMed DOI
Kfir O., Lourenço-Martins H., Storeck G.. et al. Controlling free electrons with optical whispering-gallery modes. Nature. 2020;582(7810):46–49. doi: 10.1038/s41586-020-2320-y. PubMed DOI
Henke J.-W., Raja A. S., Feist A.. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature. 2021;600(7890):653–658. doi: 10.1038/s41586-021-04197-5. PubMed DOI PMC
Schwartz O., Axelrod J. J., Campbell S. L., Turnbaugh C., Glaeser R. M., Müller H.. Laser phase plate for transmission electron microscopy. Nat. Methods. 2019;16(10):1016–1020. doi: 10.1038/s41592-019-0552-2. PubMed DOI PMC
Kirchner F. O., Gliserin A., Krausz F., Baum P.. Laser streaking of free electrons at 25 keV. Nat. Photonics. 2014;8(1):52–57. doi: 10.1038/nphoton.2013.315. DOI
Morimoto Y., Baum P.. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 2018;14(3):252–256. doi: 10.1038/s41567-017-0007-6. DOI
Morimoto Y., Baum P.. Attosecond control of electron beams at dielectric and absorbing membranes. Phys. Rev. A. 2018;97(3):033815. doi: 10.1103/PhysRevA.97.033815. DOI
Vanacore G. M., Madan I., Berruto G.. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 2018;9(1):2694. doi: 10.1038/s41467-018-05021-x. PubMed DOI PMC
Kozák M., Eckstein T., Schönenberger N., Hommelhoff P.. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 2018;14(2):121–125. doi: 10.1038/nphys4282. DOI
Kozák M., Schönenberger N., Hommelhoff P.. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 2018;120(10):103203. doi: 10.1103/PhysRevLett.120.103203. PubMed DOI
Tsarev M., Thurner J. W., Baum P.. Nonlinear-optical quantum control of free-electron matter waves. Nat. Phys. 2023;19(9):1350–1354. doi: 10.1038/s41567-023-02092-6. DOI
Echternkamp K. E., Feist A., Schäfer S., Ropers C.. Ramsey-type phase control of free-electron beams. Nat. Phys. 2016;12(11):1000–1004. doi: 10.1038/nphys3844. DOI
Kozák M., McNeur J., Leedle K. J.. et al. Optical gating and streaking of free electrons with sub-optical cycle precision. Nat. Commun. 2017;8(1):14342. doi: 10.1038/ncomms14342. PubMed DOI PMC
Priebe K. E., Rathje C., Yalunin S. V.. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photonics. 2017;11(12):793–797. doi: 10.1038/s41566-017-0045-8. DOI
Ryabov A., Thurner J. W., Nabben D., Tsarev M. V., Baum P.. Attosecond metrology in a continuous-beam transmission electron microscope. Sci. Adv. 2020;6(46):eabb1393. doi: 10.1126/sciadv.abb1393. PubMed DOI PMC
Nabben D., Kuttruff J., Stolz L., Ryabov A., Baum P.. Attosecond electron microscopy of sub-cycle optical dynamics. Nature. 2023;619(7968):63–67. doi: 10.1038/s41586-023-06074-9. PubMed DOI
Bucher T., Ruimy R., Tsesses S.. et al. Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields. Sci. Adv. 2023;9(51):eadi5729. doi: 10.1126/sciadv.adi5729. PubMed DOI PMC
Gaida J. H., Lourenço-Martins H., Yalunin S. V.. et al. Lorentz microscopy of optical fields. Nat. Commun. 2023;14(1):6545. doi: 10.1038/s41467-023-42054-3. PubMed DOI PMC
Gaida J. H., Lourenço-Martins H., Sivis M.. et al. Attosecond electron microscopy by free-electron homodyne detection. Nat. Photonics. 2024;18(5):509–515. doi: 10.1038/s41566-024-01380-8. DOI
de Abajo F. J. G., Konečná A.. Optical Modulation of Electron Beams in Free Space. Phys. Rev. Lett. 2021;126(12):123901. doi: 10.1103/PhysRevLett.126.123901. PubMed DOI
Feist A., Yalunin S. V., Schäfer S.. et al. High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Phys. Rev. Res. 2020;2(4):043227. doi: 10.1103/PhysRevResearch.2.043227. DOI
Knápek A., Sýkora J., Chlumská J., Sobola D.. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017;173:42–47. doi: 10.1016/j.mee.2017.04.002. DOI
Krüger M., Lemell Ch., Wachter G., Burgdörfer J., Hommelhoff P.. Attosecond physics phenomena at nanometric tips. J. Phys. B:At., Mol. Opt. Phys. 2018;51(17):172001. doi: 10.1088/1361-6455/aac6ac. DOI
Madan I., Dias E. J. C., Gargiulo S., Barantani F., Yannai M., Berruto G., LaGrange T., Piazza L., Lummen T. T. A., Dahan R., Kaminer I., Vanacore G. M., García de Abajo F. J., Carbone F.. Charge Dynamics Electron Microscopy: Nanoscale Imaging of Femtosecond Plasma Dynamics. ACS Nano. 2023;17(4):3657–3665. doi: 10.1021/acsnano.2c10482. PubMed DOI PMC
Hommelhoff P., Sortais Y., Aghajani-Talesh A., Kasevich M. A.. Field Emission Tip as a Nanometer Source of Free Electron Femtosecond Pulses. Phys. Rev. Lett. 2006;96(7):077401. doi: 10.1103/PhysRevLett.96.077401. PubMed DOI
Tafel A., Meier S., Ristein J., Hommelhoff P.. Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips. Phys. Rev. Lett. 2019;123(14):146802. doi: 10.1103/PhysRevLett.123.146802. PubMed DOI
Smorenburg P. W., Kanters J. H. M., Lassise A.. et al. Polarization-dependent ponderomotive gradient force in a standing wave. Phys. Rev. A. 2011;83(6):063810. doi: 10.1103/PhysRevA.83.063810. DOI
Freimund D. L., Aflatooni K., Batelaan H.. Observation of the Kapitza–Dirac effect. Nature. 2001;413(6852):142–143. doi: 10.1038/35093065. PubMed DOI
de Abajo F. J. G., Kociak M.. Electron energy-gain spectroscopy. New J. Phys. 2008;10(7):073035. doi: 10.1088/1367-2630/10/7/073035. DOI
Koutenský, P. et al. Data for ”Ultrafast 4D scanning transmission electron microscopy for imaging of localized optical fields Zenodo 10.5281/zenodo.14824588. DOI