Ultrafast 4D Scanning Transmission Electron Microscopy for Imaging of Localized Optical Fields

. 2025 Aug 20 ; 12 (8) : 4452-4459. [epub] 20250721

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40861266

Ultrafast electron microscopy aims for imaging transient phenomena occurring on nanoscale. One of its goals is to visualize localized optical and plasmonic modes generated by coherent excitation in the vicinity of various types of nanostructures. Such imaging capability was enabled by photon-induced near-field optical microscopy, which is based on spectral filtering of electrons inelastically scattered due to the stimulated interaction with the near-field. Here, we report on the development of ultrafast four-dimensional (4D) scanning transmission electron microscopy, which allows us to image the transverse components of the optical near-field while avoiding the need of electron spectral filtering. We demonstrate that this method is capable of imaging the integrated Lorentz force generated by optical near-fields of a tungsten nanotip and the ponderomotive potential of an optical standing wave with a spatial resolution of 21 nm.

Zobrazit více v PubMed

Krivanek O. L., Lovejoy T., Dellby N.. et al. Vibrational spectroscopy in the electron microscope. Nature. 2014;514(7521):209–212. doi: 10.1038/nature13870. PubMed DOI

Hage F. S., Radtke G., Kepaptsoglou D. M., Lazzeri M., Ramasse Q. M.. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI

Sirohi D., Chen Z., Sun L.. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science. 2016;352:467–470. doi: 10.1126/science.aaf5316. PubMed DOI PMC

Cheng Y.. cryo-EMHow did it get here and where will it go. Science. 2018;361(6284):876–880. doi: 10.1126/science.aaf5316. PubMed DOI PMC

Ophus C.. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019;25(3):563–582. doi: 10.1017/s1431927619000497. PubMed DOI

Yurtsever A., Zewail A. H.. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy. Science. 2009;326(5953):708–712. doi: 10.1126/science.1179314. PubMed DOI

Feist A., da Silva N. R., Liang W., Ropers C., Schäfer S.. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy. Struct. Dyn. 2018;5(1):014302. doi: 10.1063/1.5009822. PubMed DOI PMC

Nakamura A., Shimojima T., Ishizaka K.. Visualizing optically-induced strains by five-dimensional ultrafast electron microscopy. Faraday Discuss. 2022;237:27–39. doi: 10.1039/D2FD00062H. PubMed DOI

Zewail, A. H. ; Thomas, J. M. . 4D Electron Microscopy. Imaging in Space and Time; Imperial College Press, 2009.

Ash E. A., Nicholls G.. Super-resolution aperture scanning microscope. Nature. 1972;237:510–512. doi: 10.1038/237510a0. PubMed DOI

Hommelhoff P., Kealhofer C., Kasevich M. A.. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 2006;97:247402. doi: 10.1103/PhysRevLett.97.247402. PubMed DOI

Ropers C., Solli D. R., Schulz C. P., Lienau C., Elsaesser T.. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 2007;98:043907. doi: 10.1103/PhysRevLett.98.043907. PubMed DOI

Krasnok A., Tymchenko M., Alu A.. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today. 2018;21:8–21. doi: 10.1016/j.mattod.2017.06.007. DOI

Barwick B., Flannigan D., Zewail A. H.. Photon-induced near-field electron microscopy. Nature. 2009;462(7275):902–906. doi: 10.1038/nature08662. PubMed DOI

Park S. T., Lin M., Zewail A. H.. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 2010;12(12):123028. doi: 10.1088/1367-2630/12/12/123028. DOI

de Abajo F. J. G., Asenjo-Garcia A., Kociak M.. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 2010;10(5):1859–1863. doi: 10.1021/nl100613s. PubMed DOI

de Abajo F. J. G.. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82(1):209–275. doi: 10.1103/RevModPhys.82.209. DOI

Flannigan D. J., Barwick B., Zewail A. H.. Biological imaging with 4D ultrafast electron microscopy. Proc. Natl. Acad. Sci. U.S.A. 2010;107(22):9933–9937. doi: 10.1073/pnas.1005653107. PubMed DOI PMC

Vanacore G., Fitzpatrick A., Zewail A. H.. Four-dimensional electron microscopy: Ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today. 2016;11(2):228–249. doi: 10.1016/j.nantod.2016.04.009. DOI

Lu Y., Yoo B. K., Ng A. H. C.. et al. 4D electron microscopy of T cell activation. Proc. Natl. Acad. Sci. U.S.A. 2019;116(44):22014–22019. doi: 10.1073/pnas.1914078116. PubMed DOI PMC

Piazza L., Lummen T., Quiñonez E.. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 2015;6(1):6407. doi: 10.1038/ncomms7407. PubMed DOI PMC

Liu H., Baskin J., Zewail A. H.. Infrared PINEM developed by diffraction in 4D UEM. Proc. Natl. Acad. Sci. U. S. A. 2016;113(8):2041–2046. doi: 10.1073/pnas.1600317113. PubMed DOI PMC

Vanacore G. M., Berruto G., Madan I.. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 2019;18(6):573–579. doi: 10.1038/s41563-019-0336-1. PubMed DOI

Liu H., Gage T. E., Singh P.. et al. Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 2021;21(13):5842–5849. doi: 10.1021/acs.nanolett.1c01824. PubMed DOI

Feist A., Echternkamp K. E., Schauss J.. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature. 2015;521(7551):200–203. doi: 10.1038/nature14463. PubMed DOI

Krehl J., Guzzinati G., Schultz J., Potapov P., Pohl D., Martin J., Verbeeck J., Fery A., Büchner B., Lubk A.. Spectral field mapping in plasmonic nanostructures with nanometer resolution. Nat. Commun. 2018;9(1):4207. doi: 10.1038/s41467-018-06572-9. PubMed DOI PMC

Li H., Su Z.. Energy-filtered dark-field imaging of nanoparticles by PINEM in 4D electron microscopy. Appl. Phys. Lett. 2022;120(19):191103. doi: 10.1063/5.0090284. DOI

Shiloh R., Chlouba T., Hommelhoff P.. Quantum-coherent light-electron interaction in a scanning electron microscope. Phys. Rev. Lett. 2022;128(23):235301. doi: 10.1103/PhysRevLett.128.235301. PubMed DOI

Breuer J., Hommelhoff P.. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 2013;111(13):134803. doi: 10.1103/PhysRevLett.111.134803. PubMed DOI

Harvey T. R., Henke J. W., Kfir O.. et al. Probing chirality with inelastic electron-light scattering. Nano Lett. 2020;20(6):4377–4383. doi: 10.1021/acs.nanolett.0c01130. PubMed DOI

Shiloh R., Illmer J., Chlouba T.. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature. 2021;597(7877):498–502. doi: 10.1038/s41586-021-03812-9. PubMed DOI

Chlouba T., Shiloh R., Kraus S.. et al. Coherent nanophotonic electron accelerator. Nature. 2023;622(7983):476–480. doi: 10.1038/s41586-023-06602-7. PubMed DOI

Kozák M., Beck P., Deng H.. et al. Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface. Opt. Express. 2017;25:19195–19204. doi: 10.1364/OE.25.019195. PubMed DOI

Dahan R., Nehemia S., Shentcis M.. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 2020;16(11):1123–1131. doi: 10.1038/s41567-020-01042-w. DOI

Wang K., Dahan R., Shentcis M.. et al. Coherent interaction between free electrons and a photonic cavity. Nature. 2020;582(7810):50–54. doi: 10.1038/s41586-020-2321-x. PubMed DOI

Kfir O., Lourenço-Martins H., Storeck G.. et al. Controlling free electrons with optical whispering-gallery modes. Nature. 2020;582(7810):46–49. doi: 10.1038/s41586-020-2320-y. PubMed DOI

Henke J.-W., Raja A. S., Feist A.. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature. 2021;600(7890):653–658. doi: 10.1038/s41586-021-04197-5. PubMed DOI PMC

Schwartz O., Axelrod J. J., Campbell S. L., Turnbaugh C., Glaeser R. M., Müller H.. Laser phase plate for transmission electron microscopy. Nat. Methods. 2019;16(10):1016–1020. doi: 10.1038/s41592-019-0552-2. PubMed DOI PMC

Kirchner F. O., Gliserin A., Krausz F., Baum P.. Laser streaking of free electrons at 25 keV. Nat. Photonics. 2014;8(1):52–57. doi: 10.1038/nphoton.2013.315. DOI

Morimoto Y., Baum P.. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 2018;14(3):252–256. doi: 10.1038/s41567-017-0007-6. DOI

Morimoto Y., Baum P.. Attosecond control of electron beams at dielectric and absorbing membranes. Phys. Rev. A. 2018;97(3):033815. doi: 10.1103/PhysRevA.97.033815. DOI

Vanacore G. M., Madan I., Berruto G.. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 2018;9(1):2694. doi: 10.1038/s41467-018-05021-x. PubMed DOI PMC

Kozák M., Eckstein T., Schönenberger N., Hommelhoff P.. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 2018;14(2):121–125. doi: 10.1038/nphys4282. DOI

Kozák M., Schönenberger N., Hommelhoff P.. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 2018;120(10):103203. doi: 10.1103/PhysRevLett.120.103203. PubMed DOI

Tsarev M., Thurner J. W., Baum P.. Nonlinear-optical quantum control of free-electron matter waves. Nat. Phys. 2023;19(9):1350–1354. doi: 10.1038/s41567-023-02092-6. DOI

Echternkamp K. E., Feist A., Schäfer S., Ropers C.. Ramsey-type phase control of free-electron beams. Nat. Phys. 2016;12(11):1000–1004. doi: 10.1038/nphys3844. DOI

Kozák M., McNeur J., Leedle K. J.. et al. Optical gating and streaking of free electrons with sub-optical cycle precision. Nat. Commun. 2017;8(1):14342. doi: 10.1038/ncomms14342. PubMed DOI PMC

Priebe K. E., Rathje C., Yalunin S. V.. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photonics. 2017;11(12):793–797. doi: 10.1038/s41566-017-0045-8. DOI

Ryabov A., Thurner J. W., Nabben D., Tsarev M. V., Baum P.. Attosecond metrology in a continuous-beam transmission electron microscope. Sci. Adv. 2020;6(46):eabb1393. doi: 10.1126/sciadv.abb1393. PubMed DOI PMC

Nabben D., Kuttruff J., Stolz L., Ryabov A., Baum P.. Attosecond electron microscopy of sub-cycle optical dynamics. Nature. 2023;619(7968):63–67. doi: 10.1038/s41586-023-06074-9. PubMed DOI

Bucher T., Ruimy R., Tsesses S.. et al. Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields. Sci. Adv. 2023;9(51):eadi5729. doi: 10.1126/sciadv.adi5729. PubMed DOI PMC

Gaida J. H., Lourenço-Martins H., Yalunin S. V.. et al. Lorentz microscopy of optical fields. Nat. Commun. 2023;14(1):6545. doi: 10.1038/s41467-023-42054-3. PubMed DOI PMC

Gaida J. H., Lourenço-Martins H., Sivis M.. et al. Attosecond electron microscopy by free-electron homodyne detection. Nat. Photonics. 2024;18(5):509–515. doi: 10.1038/s41566-024-01380-8. DOI

de Abajo F. J. G., Konečná A.. Optical Modulation of Electron Beams in Free Space. Phys. Rev. Lett. 2021;126(12):123901. doi: 10.1103/PhysRevLett.126.123901. PubMed DOI

Feist A., Yalunin S. V., Schäfer S.. et al. High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Phys. Rev. Res. 2020;2(4):043227. doi: 10.1103/PhysRevResearch.2.043227. DOI

Knápek A., Sýkora J., Chlumská J., Sobola D.. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017;173:42–47. doi: 10.1016/j.mee.2017.04.002. DOI

Krüger M., Lemell Ch., Wachter G., Burgdörfer J., Hommelhoff P.. Attosecond physics phenomena at nanometric tips. J. Phys. B:At., Mol. Opt. Phys. 2018;51(17):172001. doi: 10.1088/1361-6455/aac6ac. DOI

Madan I., Dias E. J. C., Gargiulo S., Barantani F., Yannai M., Berruto G., LaGrange T., Piazza L., Lummen T. T. A., Dahan R., Kaminer I., Vanacore G. M., García de Abajo F. J., Carbone F.. Charge Dynamics Electron Microscopy: Nanoscale Imaging of Femtosecond Plasma Dynamics. ACS Nano. 2023;17(4):3657–3665. doi: 10.1021/acsnano.2c10482. PubMed DOI PMC

Hommelhoff P., Sortais Y., Aghajani-Talesh A., Kasevich M. A.. Field Emission Tip as a Nanometer Source of Free Electron Femtosecond Pulses. Phys. Rev. Lett. 2006;96(7):077401. doi: 10.1103/PhysRevLett.96.077401. PubMed DOI

Tafel A., Meier S., Ristein J., Hommelhoff P.. Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips. Phys. Rev. Lett. 2019;123(14):146802. doi: 10.1103/PhysRevLett.123.146802. PubMed DOI

Smorenburg P. W., Kanters J. H. M., Lassise A.. et al. Polarization-dependent ponderomotive gradient force in a standing wave. Phys. Rev. A. 2011;83(6):063810. doi: 10.1103/PhysRevA.83.063810. DOI

Freimund D. L., Aflatooni K., Batelaan H.. Observation of the Kapitza–Dirac effect. Nature. 2001;413(6852):142–143. doi: 10.1038/35093065. PubMed DOI

de Abajo F. J. G., Kociak M.. Electron energy-gain spectroscopy. New J. Phys. 2008;10(7):073035. doi: 10.1088/1367-2630/10/7/073035. DOI

Koutenský, P. et al. Data for ”Ultrafast 4D scanning transmission electron microscopy for imaging of localized optical fields Zenodo 10.5281/zenodo.14824588. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...