Assessment of Potentially Toxic Element Pollution in Surface Soils of the Upper Ohře River Basin

. 2025 Jul 30 ; 13 (8) : . [epub] 20250730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40863919

Grantová podpora
324 Ministry of Regional Development
146 Ministry of Regional Development
MZE-RO0425 Ministry of Agriculture

The soils of river basins are often exposed to contaminants resulting from anthropogenic activities. This research identified 11 potentially toxic elements (PTEs) and assessed pollution indices, ecological risk assessments, and human health risks in the topsoil of the Upper Ohře River Basin (Czech Republic and Germany). Among the PTEs, As, Cd, Cu, Pb, and Zn exhibited considerable variability across the area, with contents exceeding the legislative limits of the Czech Republic, particularly at three locations near coal mining activities. Various indices indicated significant contamination in the river basin (pollution load index > 1, except at one location); however, the level of pollution varied across locations and in relation to the used indices. The ecological risk factor identified As and Cd as the primary pollutants. The potential ecological risk index indicated a strong risk, with two locations showing a highly strong ecological risk. The findings revealed no serious non-carcinogenic or carcinogenic risks to adults, while risks were confirmed for children, with As being the main contributor. This research provides basic information for managing pollution from PTEs and protecting the soils and residents of the Upper Ohře River Basin. In this region, particular attention should be paid towards As and Cd.

Zobrazit více v PubMed

Jianfei C., Chunfang L., Lixia Z., Quanyuan W., Jianshu L. Source apportionment of potentially toxic elements in soils using APCS/MLR, PMF and geostatistics in a typical industrial and mining city in Eastern China. PLoS ONE. 2020;15:e0238513. doi: 10.1371/journal.pone.0238513. PubMed DOI PMC

Sun J., Zhao M., Cai B., Song X., Tang R., Huang X., Huang H., Huang J., Fan Z. Risk assessment and driving factors of trace metal(loid)s in soils of China. Environ. Pollut. 2022;309:119772. doi: 10.1016/j.envpol.2022.119772. PubMed DOI

Hoque M.M., Islam A., Islam A.R.M.T., Pal S.C., Mahammad S., Alam E. Assessment of soil heavy metal pollution and associated ecological risk of agriculture dominated mid-channel bars in a subtropical river basin. Sci. Rep. 2023;13:11104. doi: 10.1038/s41598-023-38058-0. PubMed DOI PMC

Hu B., Li J., Liu R., Lei G., Wang X., Wang L. Exposure to arsenic and other potentially toxic elements: Health risk assessment and source analysis in the Wuming Basin, Guangxi Province, China. Sci. Rep. 2024;14:2835. doi: 10.1038/s41598-024-52947-y. PubMed DOI PMC

Liu L., Li Y., Gu X., Tulcan R.X.S., Yan L., Lin C., Pan J. Priority sources identification and risks assessment of heavy metal(loid)s in agricultural soils of a typical antimony mining watershed. J. Environ. Sci. 2025;147:153–164. doi: 10.1016/j.jes.2023.11.007. PubMed DOI

Goren A.Y., Genisoglu M., Kazancl Y., Sofuoglu S.C. Countrywide spatial variation of potentially toxic element contamination in soils of Turkey and assessment of population health risks for nondietary ingestion. ACS Omega. 2022;7:36457–36467. doi: 10.1021/acsomega.2c04261. PubMed DOI PMC

Agyeman P.C., John K., Kebonye N.M., Borůvka L., Vašát R., Drábek O., Němeček K. Human health risk exposure and ecological risk assessment of potentially toxic element pollution in agricultural soils in the district of Frydek Mistek, Czech Republic: A sample location approach. Environ. Sci. Eur. 2021;33:137. doi: 10.1186/s12302-021-00577-w. DOI

Said I., Salman S.A.E.R., Samy Y., Awad S.A., Melegy A., Hursthouse A.S. Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt. Environ. Monit. Assess. 2019;191:267. doi: 10.1007/s10661-019-7388-1. PubMed DOI PMC

Rahmonov O., Sobala M., Środek D., Karkosz D., Pytel S., Rahmonov M. The spatial distribution of potentially toxic elements in the mountain forest topsoils (the Silesian Beskids, southern Poland) Sci. Rep. 2024;14:338. doi: 10.1038/s41598-023-50817-7. PubMed DOI PMC

Olaniran A.O., Balgobind A., Pillay B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 2013;14:10197–10228. doi: 10.3390/ijms140510197. PubMed DOI PMC

Zhang Z., Wu X., Tu C., Huang X., Zhang J.C., Fang H., Huo H., Lin C. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol. Environ. Saf. 2020;206:111150. doi: 10.1016/j.ecoenv.2020.111150. PubMed DOI

Kicińska A., Pomykała R., Izquierdo-Diaz M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil. Sci. 2022;73:e13203. doi: 10.1111/ejss.13203. DOI

Meng D., Li J., Liu T., Liu Y., Yan M., Hu J., Li X., Liu X., Liang Y., Liu H., et al. Effects of redox potential on soil cadmium solubility: Insight into microbial community. J. Environ. Sci. 2019;75:224–232. doi: 10.1016/j.jes.2018.03.032. PubMed DOI

Akbulut S., Grieken R., Kilic M.A., Cevik U., Rotondo G.G. Identification of heavy metal origins related to chemical and morphological soil properties using several non-destructive X-ray analytical methods. Environ. Monit. Assess. 2013;185:2377–2394. doi: 10.1007/s10661-012-2718-6. PubMed DOI

Agyeman P.C., Ahado S.K., Kingsley J., Kebonye N.M., Biney J.K.M., Borůvka L., Vasat R., Kocarek M. Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environ. Geochem. Health. 2021;43:601–620. doi: 10.1007/s10653-020-00743-8. PubMed DOI

Kowalska J.B., Mazurek R., Gąsiorek M., Zaleski T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health. 2018;40:2395–2420. doi: 10.1007/s10653-018-0106-z. PubMed DOI PMC

Gong Q.J., Deng J., Xiang Y.C., Wang Q.F., Yang L.Q. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 2008;19:230–241. doi: 10.1016/s1002-0705(08)60042-4. DOI

Majerová L., Bábek O., Navrátil T., Nováková T., Štojdl J., Elznicová J., Hron K., Matys Grygar T. Dam reservoirs as an efficient trap for historical pollution: The passage of Hg and Pb through the Ohře River, Czech Republic. Environ. Earth Sci. 2018;77:574. doi: 10.1007/s12665-018-7761-3. DOI

Matys Grygar T., Elznicová J., Kiss T., Smith H.G. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena. 2016;144:109–129. doi: 10.1016/j.catena.2016.05.004. DOI

Matys Grygar T., Elznicová J., Lelková T., Kiss T., Balogh M., Strnad L., Navrátil T. Sedimentary archive of contamination in the confined channel of the Ohře River, Czech Republic. J. Soils Sediments. 2017;17:2596–2609. doi: 10.1007/s11368-017-1664-x. DOI

Fikarová J., Kenecká S., Elznicová J., Faměra M., Lelková T., Matkovič J., Matys Grygar T. Spatial distribution of organic pollutants (PAHs and polar pesticides) in the floodplain of the Ohře (Eger) River, Czech Republic. J. Soils Sediments. 2018;18:259–275. doi: 10.1007/s11368-017-1807-0. DOI

Elznicová J., Kiss T., Sipos G., Faměra M., Štojdl J., Váchová V., Matys Grygar T. A central European alluvial river under anthropogenic pressure: The Ohře River, Czechia. Catena. 2021;201:105218. doi: 10.1016/j.catena.2021.105218. DOI

Mehlich A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil. Sci. Plan. Anal. 1984;15:1409–1416. doi: 10.1080/00103628409367568. DOI

Zbíral J., Malý S., Váňa M., Čuhel J., Fojtlová E., Čižmár D., Žalmanová A., Srnková J., Obdržálková E. Central Institute for Supervising and Testing in Agriculture. ÚKZÚZ Brno; Brno, Czech Republic: 2011. Jednotné pracovní postupy: Analýza půd III (In Czech)

Müller G. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 1969;2:108–118.

Wedepohl K.H. The composition of the continental crust. Geochim. Cosmochim. Acta. 1995;59:1217–1232. doi: 10.1016/0016-7037(95)00038-2. DOI

Li B., Deng J., Li Z., Chen J., Zhan F., He Y., He L., Li Y. Contamination and health risk assessment of heavy metals in soil and ditch sediments in long-term mine wastes area. Toxics. 2022;10:607. doi: 10.3390/toxics10100607. PubMed DOI PMC

Ahmad W., Alharthy R.D., Zubair M., Ahmed M., Hameed A., Rafique S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021;11:17006. doi: 10.1038/s41598-021-94616-4. PubMed DOI PMC

Tomlinson D.L., Wilson J.G., Harris C.R., Jeffrey D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980;33:566–575. doi: 10.1007/BF02414780. DOI

Tyagi N., Upadhyay M.K., Majumdar A., Pathak S.K., Giri B., Jaiswal M.K., Srivastava S. An assessment of various potentially toxic elements and associated health risks in agricultural soil along the middle Gangetic basin, India. Chemosphere. 2022;300:134433. doi: 10.1016/j.chemosphere.2022.134433. PubMed DOI

Håkanson L. An ecological risk index for aquatic. Pollution control: A sedimentological approach. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI

Akoto R., Anning A.K. Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ. Adv. 2021;3:100028. doi: 10.1016/j.envadv.2020.100028. DOI

Fadlillah L.N., Utami S., Rachmawati A.A., Jayanto G.D., Widyastuti M. Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia. Heliyon. 2023;9:e15485. doi: 10.1016/j.heliyon.2023.e15485. PubMed DOI PMC

Yang S., Sun L., Sun Y., Song K., Qin Q., Zhu Z., Xue Y. Towards an integrated health risk assessment framework of soil heavy metals pollution: Theoretical basis, conceptual model, and perspectives. Environ. Pollut. 2023;316:120596. doi: 10.1016/j.envpol.2022.120596. PubMed DOI

Yan J., Xu Z., Li F., Li Y., Chen M., Zhu X., Cui X. Heavy metals in soil, water sediment, and ambient PM2.5 across the Yangtze River economic belt: Integrated environment risk identification and countermeasures. J. Water Clim. Change. 2021;12:2920–2932. doi: 10.2166/wcc.2021.208. DOI

US EPA . Exposure Factors Handbook. Final ed. U.S. Environment Protection Agency; Washington, DC, USA: 2011.

Taylor A.A., Tsuji J.S., McArdle M.E., Adams W.J., Goodfellow W.L., Jr. Recommended reference values for risk assessment of oral exposure to copper. Risk Anal. 2023;43:211–218. doi: 10.1111/risa.13906. PubMed DOI

Ezez D., Birhanu H., Shamena S., Engidaw S. Bioaccumulation of heavy metals, assessment of carcinogenic and non-carcinogenic health risk in various spices. J. Hazard. Mater. Adv. 2024;15:100441. doi: 10.1016/j.hazadv.2024.100441. DOI

de Souza R.E., Fontes M.P.F., Tucci C.A.F., Lima H.N., da Silva Ferreira M. Health risk assessment and quality reference values of potentially toxic elements in soils of the Southwestern Amazonas State—Brazil. Sci. Total Environ. 2024;912:168937. doi: 10.1016/j.scitotenv.2023.168937. PubMed DOI

Xie X., Liu Y., Qiu H., Yang X. Quantifying ecological and human health risks of heavy metals from different sources in farmland soils within a typical mining and smelting industrial area. Environ. Geochem. Health. 2023;45:5669–5683. doi: 10.1007/s10653-020-00731-y. PubMed DOI

Deng Y., Jiang L., Xu L., Hao X., Zhang S., Xu M., Zhu P., Fu S., Liang Y., Yin H., et al. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields—A case study in Xiangtan City, southern China. Ecotoxicol. Environ. Saf. 2019;171:281–289. doi: 10.1016/j.ecoenv.2018.12.060. PubMed DOI

Vácha R., Sáňka M., Sáňka O., Skála J., Čechmánková J. The Fluvisol and sediment trace element contamination level as related to their geogenic and anthropogenic source. Plant Soil. Environ. 2013;59:136–142. doi: 10.17221/723/2012-PSE. DOI

Ma J.F. Plant root responses to three abundant soil minerals: Silicon, aluminum and iron. Crit. Rev. Plant Sci. 2005;24:267–281. doi: 10.1080/07352680500196017. DOI

Colombo C., Palumbo G., He J.Z., Pinton R., Cesco S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments. 2014;14:538–548. doi: 10.1007/s11368-013-0814-z. DOI

Reimann C., Fabian K., Birke M., Filzmoser P., Demetriades A., Négrel P., Oorts K., Matschullat J., de Caritat P., Albanese S., et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 2018;88:302–318. doi: 10.1016/j.apgeochem.2017.01.021. DOI

Skála J., Vácha R., Hofman J., Horváthová V., Sáňka M., Čechmánková J. Spatial differentiation of ecosystem risks of soil pollution in floodplain areas of the Czech Republic. Soil. Water Res. 2017;12:1–9. doi: 10.17221/53/2016-SWR. DOI

Matys Grygar T., Bábek O., Sedláček J., Lenďáková Z., Faměra M., Štojdl J., Pacina J., Tolaszová J., Kříženecká S. Segregation and retention of As, potentially toxic metals, and organic pollutants in a reservoir from the Ohře River (the Czech Republic) J. Soils Sediments. 2020;20:2931–2948. doi: 10.1007/s11368-020-02636-w. DOI

Jain C.K., Vaid U., Sharma S.K., Singh S. Assessment of potentially toxic elements’ contamination in surface soils of Kulsi River Basin in North East India. SN Appl. Sci. 2019;1:673. doi: 10.1007/s42452-019-0689-8. DOI

Rivera-Hernández J.R., Alvarado-Zambrano D., Gonzalez L.A., Green-Ruiz C.R. Subtotal content and geochemical fractionation of potential toxic elements in agricultural soils from Mocorito River basin in NW Mexico: Environmental and health implications. Int. J. Environ. Health Res. 2021;31:915–931. doi: 10.1080/09603123.2019.1700939. PubMed DOI

Giri S., Singh A.K. Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environ. Sci. Pollut. Res. 2017;24:14945–14956. doi: 10.1007/s11356-017-9039-9. PubMed DOI

Kolawole T.O., Olatunji A.S., Jimoh M.T., Fajemila O.T. Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria. J. Health Pollut. 2018;8:180906. doi: 10.5696/2156-9614-8.19.180906. PubMed DOI PMC

Mugoša B., Ðurović D., Nedović-Vuković M., Barjaktarović-Labović S., Vrvić M. Assessment of ecological risk of heavy metal contamination in coastal municipalities of Montenegro. Int. J. Environ. Res. Public Health. 2016;13:393. doi: 10.3390/ijerph13040393. PubMed DOI PMC

Zhang W., Liu M., Li C. Soil heavy metal contamination assessment in the Hun-Taizi River watershed, China. Sci. Rep. 2020;10:8730. doi: 10.1038/s41598-020-65809-0. PubMed DOI PMC

Vácha R., Skála J., Čechmánková J., Horváthová V., Hladík J. Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. J. Soils Sediments. 2015;15:1813–1824. doi: 10.1007/s11368-015-1120-8. DOI

Pan Y., Chen M., Wang X., Chen Y., Dong K. Ecological risk assessment and source analysis of heavy metals in the soils of a lead-zinc mining watershed area. Water. 2023;15:113. doi: 10.3390/w15010113. DOI

Liu Q., Jia Z., Li S., Hu J. Assessment of heavy metal pollution, distribution and quantitative source apportionment in surface sediments along a partially mixed estuary (Modaomen, China) Chemosphere. 2019;225:829–838. doi: 10.1016/j.chemosphere.2019.03.063. PubMed DOI

Pan L., Fang G., Wang Y., Wang L., Su B., Li D., Xiang B. Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, Miyun Reservoir, China. Int. J. Environ. Res. Public Health. 2018;15:2364. doi: 10.3390/ijerph15112364. PubMed DOI PMC

Zafeiriou I., Gasparatos D., Megremi I., Ioannou D., Massas I., Economou-Eliopoulos M. Assessment of potentially toxic element contamination in the Philippi Peatland, Eastern Macedonia, Greece. Minerals. 2022;12:1475. doi: 10.3390/min12111475. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...